A quadratic optimal control problem for a class of linear discrete distributed systems

Mostafa Rachik; Mustapha Lhous; Ouafa El Kahlaoui

International Journal of Applied Mathematics and Computer Science (2006)

  • Volume: 16, Issue: 4, page 431-440
  • ISSN: 1641-876X

Abstract

top
A linear quadratic optimal control problem for a class of discrete distributed systems is analyzed. To solve this problem, we introduce an adequate topology and establish that optimal control can be determined though an inversion of the appropriate isomorphism. An example and a numerical approach are given.

How to cite

top

Rachik, Mostafa, Lhous, Mustapha, and El Kahlaoui, Ouafa. "A quadratic optimal control problem for a class of linear discrete distributed systems." International Journal of Applied Mathematics and Computer Science 16.4 (2006): 431-440. <http://eudml.org/doc/207804>.

@article{Rachik2006,
abstract = {A linear quadratic optimal control problem for a class of discrete distributed systems is analyzed. To solve this problem, we introduce an adequate topology and establish that optimal control can be determined though an inversion of the appropriate isomorphism. An example and a numerical approach are given.},
author = {Rachik, Mostafa, Lhous, Mustapha, El Kahlaoui, Ouafa},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {discrete distributed system; linear system; Hilbert uniquenessmethod; optimal control; Hilbert uniqueness method},
language = {eng},
number = {4},
pages = {431-440},
title = {A quadratic optimal control problem for a class of linear discrete distributed systems},
url = {http://eudml.org/doc/207804},
volume = {16},
year = {2006},
}

TY - JOUR
AU - Rachik, Mostafa
AU - Lhous, Mustapha
AU - El Kahlaoui, Ouafa
TI - A quadratic optimal control problem for a class of linear discrete distributed systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 4
SP - 431
EP - 440
AB - A linear quadratic optimal control problem for a class of discrete distributed systems is analyzed. To solve this problem, we introduce an adequate topology and establish that optimal control can be determined though an inversion of the appropriate isomorphism. An example and a numerical approach are given.
LA - eng
KW - discrete distributed system; linear system; Hilbert uniquenessmethod; optimal control; Hilbert uniqueness method
UR - http://eudml.org/doc/207804
ER -

References

top
  1. Athans M. and Falb P.L. (1966): Optimal Control. - New York: McGraw Hill. 
  2. Brezis H. (1987): Analyse Fonctionnelle. - Paris: Masson. Zbl0511.46001
  3. Chraibi L., Karrakchou J., Ouansafi A. and Rachik M. (2000): Exact controllability and optimal control for distributed systems with a discrete delayed control. - J. FranklinInstit., Vol. 337, No. 5, pp. 499-514. Zbl1031.93026
  4. Ciarlet P.G. (1988): Introduction Analyse Numerique Matricielle etaa l'Optimisation. - Paris: Masson. 
  5. Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. - Berlin: Springer. Zbl0389.93001
  6. Curtain R. and Zwart H. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory. - New York: Springer. Zbl0839.93001
  7. Daley D.I. and Gani J. (2001): Epidemic Modelling. An Introduction. - Cambridge: Cambridge University Press. Zbl0964.92035
  8. Dorato P. (1993): Theoretical development in discrete control. - Automatica, Vol. 19, No. 4, pp. 385-400. Zbl0511.93048
  9. El Jai A. and Bel Fekih A. (1990): Exacte contrôlabilite et contrôle optimal des systèmes paraboliques. - Revue APII Control Systems Analysis, No. 24, pp. 357-376. 
  10. El Jai A. and Berrahmoune L. (1991): Controllability of damped flexible systems. - Proc. IFAC Symp. s Distributed Parameter Systems, Perpignan, France, pp. 97-102. 
  11. Faradzhev R.G., Phat Vu Ngoc and Shapiro A.V.: (1986): Controllability theory of discrete dynamic systems. - Autom. Remote Contr., Vol. 47, pp. 1-20. Zbl0602.93007
  12. Halkin H. (1964): Optimal control for systems described by difference equations, In: Advances in Control Systems, Vol. 1, (C.T. Leondes, Ed.). - New York: Academic Press, Vol. 1, pp. 173-196. 
  13. Jolivet E. (1983): Introduction aux Modeles Mathematiquesen Biologie. - Paris: Masson. 
  14. Kalman R.E. (1960): Contributions to the theory of optimal control. - Bol. Soc. Mat. Mexicana, Vol. 2, No. 5, pp. 102-119. Zbl0112.06303
  15. Karrakchou L., Rabah R. and Rachik M. (1998): Optimal control of discrete distributed systems with delays in state and control: State space theory and HUM approaches. - Syst. Anal. Modell. Simul., Vol. 30, pp. 225-245. Zbl0908.49027
  16. Karrakchou L. and Rachik M. (1995): Optimal control of discrete distributed systems with delays in the control: The finite horizoncase. - Arch. Contr. Sci., Vol. 4(XL), Nos. 1-2, pp. 37-53. Zbl0859.49005
  17. Klamka J. (1995): Contrained controllability of nonlinear discrete systems. - IMA J. Appl. Math. Contr. Inf., Vol. 12, No. 2, pp. 245-252. Zbl0840.93014
  18. Klamka J. (2002): Controllability of nonlinear discrete systems. - Int. J. Appl. Math. Comput. Sci., Vol. 12, No. 2, pp. 173-180. Zbl1017.93014
  19. Lasiecka I. and Triggiani R. (2000): Control Theory of Partial Differential Equations: Continuous and Approximation Theories. Part I: Abstract Parabolic Systems. - Cambridge: Cambridge University Press. Zbl0942.93001
  20. Lee K.Y., Chow S. and Barr R.O. (1972): On the control ofdiscrete-time distributed parameter systems. - SIAM J. Contr., Vol. 10,No. 2, pp. 361-376. Zbl0253.49004
  21. Lions J.L. (1968): Contrôle Optimal des Systèmes Gouvernespar des Equations aux Derivees Partielles. - Paris: Dunod. Zbl0179.41801
  22. Lions J.L. (1988a): Exact controllability, stabilization and perturbation for distributed systems. - SIAM Rev., Vol. 30, No. 1, pp. 1-68. Zbl0644.49028
  23. Lions J.L. (1988b): Controlabilite Exacte, Stabilisation et Perturbations des Systemes Distribues, Vol. 1. - Paris: Masson. Zbl0653.93002
  24. Lun'kov V.A. (1980): Controllability and stabilization of linear discrete systems. - Differents. Uravn., Vol. 16, No. 4, pp. 753-754,(in Russian). 
  25. Ogata K. (1995): Discrete-Time Control Systems. - Englewood Cliffs: Prentice-Hall. 
  26. Rabah R. and Malabre M. (1999): Structure at infinity for linear infinite dimensional systems. - Int. Report, Institut de Recherche en Cybernetique de Nantes. Zbl1274.93108
  27. Rachik M., Lhous M. and Tridane A. (2003): Controllability and optimal control problem for linear time-varying discrete distributed systems. - Syst. Anal. Modell. Simul., Vol. 43, No. 2, pp. 137-164. Zbl1057.49025
  28. Weiss L. (1972): Controllability, realisation and stability of discrete-time systems. - SIAM J. Contr., Vol. 10, No. 2, pp. 230-262. 
  29. Zabczyk J. (1974): Remarks on the control of discrete-time distributed parameter systems. - SIAM J. Contr., Vol. 12,No. 4, pp. 721-735. Zbl0254.93027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.