Generalized kernel regression estimatefor the identification of Hammerstein systems

Grzegorz Mzyk

International Journal of Applied Mathematics and Computer Science (2007)

  • Volume: 17, Issue: 2, page 189-197
  • ISSN: 1641-876X

Abstract

top
A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown characteristic is proved and the question of the convergence rate is discussed. Illustrative simulation examples are included.

How to cite

top

Mzyk, Grzegorz. "Generalized kernel regression estimatefor the identification of Hammerstein systems." International Journal of Applied Mathematics and Computer Science 17.2 (2007): 189-197. <http://eudml.org/doc/207831>.

@article{Mzyk2007,
abstract = {A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown characteristic is proved and the question of the convergence rate is discussed. Illustrative simulation examples are included.},
author = {Mzyk, Grzegorz},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {Hammerstein system; kernel estimation; nonparametric regression},
language = {eng},
number = {2},
pages = {189-197},
title = {Generalized kernel regression estimatefor the identification of Hammerstein systems},
url = {http://eudml.org/doc/207831},
volume = {17},
year = {2007},
}

TY - JOUR
AU - Mzyk, Grzegorz
TI - Generalized kernel regression estimatefor the identification of Hammerstein systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2007
VL - 17
IS - 2
SP - 189
EP - 197
AB - A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown characteristic is proved and the question of the convergence rate is discussed. Illustrative simulation examples are included.
LA - eng
KW - Hammerstein system; kernel estimation; nonparametric regression
UR - http://eudml.org/doc/207831
ER -

References

top
  1. Bai E.W. (2003): Frequency domain identification of Hammerstein models. - IEEE Trans. Automat. Contr., Vol.48, No.4, pp.530-542. 
  2. Bai E.W. and Li D. (2004): Convergence of the iterative Hammerstein system identification algorithm. - IEEE Trans. Automat. Contr., Vol.49, No.11, pp.1929-1940. 
  3. Billings S.A. and Fakhouri S.Y. (1982): Identification of systems containing linear dynamic and static nonlinear elements. - Automat., Vol.18, No.1, pp.15-26. Zbl0472.93067
  4. Chang F.H.I. and Luus R. (1971): A non-iterative method for identification using Hammerstein model. - IEEE Trans. Automat. Contr., Vol.AC-16, No.4, pp.464-468. 
  5. Chen H.F. (2005): Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewise-linear memoryless block. - IEEE Trans. Automat. Contr., Vol.50, No.10, pp.1612-1617. 
  6. Giannakis G.B. and Serpedin E. (2001): A bibliography on nonlinear system identification. - Signal Process., Vol.81,No.3, pp.533-580. Zbl1079.93500
  7. Giunta G., Jacovitti G. and Neri A. (1991): Bandpass nonlinear system identification by higher cross correlation. - IEEE Trans. Signal Process., Vol.39, No.9, pp.2092-2095. Zbl0760.93082
  8. Gomez J.C. and Basualdo M. (2000): Nonlinear model identification of batch distillation process. - Proc. Int. IFAC Symp. Advanced Control of Chemical Processes, ADCHEM, Pisa, Italy, pp.953-959. 
  9. Greblicki W. (1989): Nonparametric orthogonal series identification of Hammerstein systems. - Int. J. Syst. Sci., Vol.20, No.12, pp.2355-2367. Zbl0688.93062
  10. Greblicki W. (2001): Recursive identification of Wiener systems. - Int. J. Appl. Math. Comp. Sci., Vol.11, No.4, pp.977-991. Zbl1001.93085
  11. Greblicki W., Krzyżak A. and Pawlak M. (1984): Distribution-free pointwise consistency of kernel regression estimate. - Ann. Stat., Vol.12, No.4, pp.1570-1575. Zbl0551.62025
  12. Greblicki W. and Pawlak M. (1986): Identification of discrete Hammerstein systems using kernel regression estimates. - IEEE Trans. Automat. Contr., Vol.31, No.1, pp.74-77. Zbl0584.93066
  13. Greblicki W. and Pawlak M. (1989): Nonparametric identification of Hammerstein systems. - IEEE Trans. Inf. Theory, Vol.35, No.2, pp.409-418. Zbl0676.93015
  14. Greblicki W. and Pawlak M. (1994): Cascade non-linear system identification by a non-parametric method. - Int. J. Syst. Sci., Vol.25, No.1, pp.129-153. Zbl0790.93033
  15. Haber M. and Keviczky L. (1999): Nonlinear System Identification - Input-Output Modeling Approach. - Dordrecht: Kluwer. Zbl0934.93004
  16. Haber R. and Zeirfuss P. (1988): Identification of an electrically heated heat exchanger by several nonlinear models using different structures and parameter estimation methods. - Tech. Rep., Inst. Machine and Process Automation, Technical University of Vienna, Austria. 
  17. Hannan E.J. and Deistler M. (1998): The Statistical Theory of Linear Systems. - New York: Wiley. Zbl0641.93002
  18. Hasiewicz Z. and Mzyk G. (2004a): Combined parametric-nonparametric identification of Hammerstein systems. - IEEE Trans. Automat. Contr., Vol.49, No.8, pp.1370-1376. 
  19. Hasiewicz Z. and Mzyk G. (2004b): Nonparametric instrumental variables for Hammerstein system identification. - Int. J. Contr., (submitted). Zbl1168.93412
  20. Hasiewicz Z., Pawlak M. and Śliwiński P. (2005): Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support. - IEEE Trans. Circ. Syst. I: Fund. Theory Applic., Vol.52, No.2, pp.427-442. 
  21. Härdle W. (1990): Applied Nonparametric Regression. - Cambridge: Cambridge University Press. Zbl0714.62030
  22. Janczak A. (1999): Parameter estimation based fault detection and isolation in Wiener and Hammerstein systems. - Int. J. Appl. Math. Comput. Sci., Vol.9, No.3, pp.711-735. Zbl0945.93529
  23. Jang W. and Kim G. (1994): Identification of loudspeaker nonlinearities using the NARMAX modelling technique. - J.Audio Eng. Soc., Vol.42, No.1/2, pp.50-59. 
  24. Krzyżak A. (1990): On estimation of a class of nonlinear systems by the kernel regression estimate. - IEEE Trans. Inf. Theory, Vol. IT-36, No.1, pp. 141-152. Zbl0714.62033
  25. Krzyżak A., Sąsiadek J. and Kégl B. (2001): Identification of dynamic nonlinear systems using the Hermite series approach. - Int. J. Syst. Sci., Vol. 32, No. 10, pp. 1261-1285. Zbl1015.93013
  26. Latawiec K.J. (2004): The Power of Inverse Systems in Linear and Nonlinear Modeling and Control. - Opole: Opole University of Technology Press. 
  27. Ljung L. (1987): System Identification: Theory for the User. - Englewood Cliffs, NJ: Prentice Hall. Zbl0615.93004
  28. Narendra K.S. and Gallman P.G. (1966): An iterative method for the identification of nonlinear systems using the Hammerstein model. - IEEE Trans. Automat. Contr., Vol. 11, No. 3, pp. 546-550. 
  29. Pawlak M. and Hasiewicz Z. (1998): Nonlinear system identification by the Haar multiresolution analysis. - IEEE Trans. Circ. Syst., Vol.45, No.9, pp.945-961. Zbl0952.93021
  30. Söderström T. and Stoica P. (1982): Instrumental-variable methods for identification of Hammerstein systems. - Int. J. Contr., Vol.35, No.3, pp.459-476. Zbl0479.93071
  31. Söderström T. and Stoica P. (1989): System Identification. - Englewood Cliffs, NJ: Prentice Hall. Zbl0695.93108
  32. Van den Hof P., Heuberger P. and Bokor J. (1995): System identification with generalized orthonormal basis functions. - Automatica, Vol.31, No.12, pp.1821-1834. Zbl0848.93013
  33. Vörös J. (1999): Iterative algorithm for identification of Hammerstein systems with two-segment nonlinearities. - IEEE Trans. Automat. Contr., Vol.44, No.11, pp.2145-2149. Zbl1136.93446
  34. Wand M.P. and Jones H.C. (1995): Kernel Smoothing. -London: Chapman and Hall. Zbl0854.62043
  35. Zhang Y.K. and Bai E.W. (1996): Simulation of spring discharge from a limestone aquifer in Iowa. - Hydrogeol. J., Vol.4, No.4, pp.41-54. 
  36. Zhu Y. (2000): Identification of Hammerstein models for control using ASYM. - Int. J. Contr., Vol.73, No.18, pp.1692-1702 Zbl0992.93016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.