Nonparametric instrumental variables for identification of block-oriented systems

Grzegorz Mzyk

International Journal of Applied Mathematics and Computer Science (2013)

  • Volume: 23, Issue: 3, page 521-537
  • ISSN: 1641-876X

Abstract

top
A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation error. The method is simple in implementation and robust to the correlated noise.

How to cite

top

Grzegorz Mzyk. "Nonparametric instrumental variables for identification of block-oriented systems." International Journal of Applied Mathematics and Computer Science 23.3 (2013): 521-537. <http://eudml.org/doc/262481>.

@article{GrzegorzMzyk2013,
abstract = {A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation error. The method is simple in implementation and robust to the correlated noise.},
author = {Grzegorz Mzyk},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {system identification; instrumental variables; NARMAX system; Hammerstein system; Wiener system; Lur'e system; nonparametric methods},
language = {eng},
number = {3},
pages = {521-537},
title = {Nonparametric instrumental variables for identification of block-oriented systems},
url = {http://eudml.org/doc/262481},
volume = {23},
year = {2013},
}

TY - JOUR
AU - Grzegorz Mzyk
TI - Nonparametric instrumental variables for identification of block-oriented systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2013
VL - 23
IS - 3
SP - 521
EP - 537
AB - A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation error. The method is simple in implementation and robust to the correlated noise.
LA - eng
KW - system identification; instrumental variables; NARMAX system; Hammerstein system; Wiener system; Lur'e system; nonparametric methods
UR - http://eudml.org/doc/262481
ER -

References

top
  1. Bai, E. (1998). An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems, Automatica 34(3): 333-338. Zbl0915.93018
  2. Chen, S. and Billings, S. (1989). Representations of non-linear systems: The NARMAX model, International Journal of Control 49(3): 1013-1032. Zbl0674.93009
  3. Chow, Y. and Teicher, H. (2003). Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, NY. Zbl1049.60001
  4. Findeisen, W., Bailey, F., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1980). Control and Coordination in Hierarchical Systems, J. Wiley, Chichester/New York, NY. Zbl0534.93002
  5. Finigan, B. and Rowe, I. (1974). Strongly consistent parameter estimation by the introduction of strong instrumental variables, IEEE Transactions on Automatic Control 19(6): 825-830. Zbl0291.93060
  6. Giri, F. and Bai, E.W. (2010). Block-Oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer, Berlin. Zbl1201.93004
  7. Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY. Zbl1172.93001
  8. Haber, R. and Keviczky, L. (1999). Nonlinear System Identification: Input-Output Modeling Approach, Kluwer Academic Publishers, Dordrecht. Zbl0934.93004
  9. Hannan, E. and Deistler, M. (1988). The Statistical Theory of Linear Systems, John Wiley and Sons, New York, NY. Zbl0641.93002
  10. Hansen, L. and Singleton, K. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models, Econometrica: Journal of the Econometric Society 50(5): 1269-1286. Zbl0497.62098
  11. Hasiewicz, Z. (1989). Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems, International Journal of Systems Science 20(12): 2427-2449. Zbl0686.93087
  12. Hasiewicz, Z. and Mzyk, G. (2009). Hammerstein system identification by non-parametric instrumental variables, International Journal of Control 82(3): 440-455. Zbl1168.93412
  13. Hill, D. and Chong, C. (1989). Lyapunov functions of Lur'e-Postnikov form for structure preserving models of power systems, Automatica 25(3): 453-460. Zbl0684.93056
  14. Hill, D. and Mareels, I. (1990). Stability theory for differential/algebraic systems with application to power systems, IEEE Transactions on Circuits and Systems 37(11): 1416-1423. Zbl0717.93044
  15. Kincaid, D. and Cheney, E. (2002). Numerical Analysis: Mathematics of Scientific Computing, Vol. 2, American Mathematical Society, Pacific Grove, CA. Zbl0877.65002
  16. Kowalczuk, Z. and Kozłowski, J. (2000). Continuous-time approaches to identification of continuous-time systems, Automatica 36(8): 1229-1236. Zbl0953.93503
  17. Kudrewicz, J. (1976). Functional Analysis for Control and Electronics Engineers, PWN, Warsaw, (in Polish). Zbl0377.46005
  18. Lu, J. and Hill, D. (2007). Impulsive synchronization of chaotic Lur'e systems by linear static measurement feedback: An LMI approach, IEEE Transactions on Circuits and Systems II: Express Briefs 54(8): 710-714. 
  19. Mzyk, G. (2007). Generalized kernel regression estimate for the identification of Hammerstein systems, International Journal of Applied Mathematics and Computer Science 17(2): 189-197, DOI: 10.2478/v10006-007-0018-z. Zbl1119.93416
  20. Mzyk, G. (2009). Nonlinearity recovering in Hammerstein system from short measurement sequence, IEEE Signal Processing Letters 16(9): 762-765. 
  21. Mzyk, G. (2013). Instrumental variables for nonlinearity recovering in block-oriented systems driven by correlated signal, International Journal of Systems Science, DOI: 10.1080/00207721.2013.775682. Zbl1317.93259
  22. Rao, C. (1973). Linear Statistical Inference and Its Applications, Wiley, New York, NY. Zbl0256.62002
  23. Sagara, S. and Zhao, Z.-Y. (1990). Numerical integration approach to on-line identification of continuous-time systems, Automatica 26(1): 63-74. Zbl0715.93026
  24. Sastry, S. (1999). Nonlinear Systems: Analysis, Stability, and Control, Interdisciplinary Applied Mathematics, Vol. 10, Springer, New York, NY. Zbl0924.93001
  25. Söderström, T. and Stoica, P. (1983). Instrumental Variable Methods for System Identification, Vol. 161, Springer-Verlag, Berlin. Zbl0522.93003
  26. Söderström, T. and Stoica, P. (1989). System Identification, Prentice Hall, Englewood Cliffs, NJ. Zbl0695.93108
  27. Söderström, T. and Stoica, P. (2002). Instrumental variable methods for system identification, Circuits, Systems, and Signal Processing 21(1): 1-9. Zbl0522.93003
  28. Stoica, P. and Söderström, T. (1982). Instrumental-variable methods for identification of Hammerstein systems, International Journal of Control 35(3): 459-476. Zbl0479.93071
  29. Suykens, J., Yang, T. and Chua, L. (1998). Impulsive synchronization of chaotic Lur'e systems by measurement feedback, International Journal of Bifurcation and Chaos 8(06): 1371-1381. Zbl0936.93027
  30. Ward, R. (1977). Notes on the instrumental variable method, IEEE Transactions on Automatic Control 22(3): 482-484. 
  31. Wong, K. and Polak, E. (1967). Identification of linear discrete time systems using the instrumental variable method, IEEE Transactions on Automatic Control 12(6): 707-718. 
  32. Zhang, Y., Bai, E., Libra, R., Rowden, R. and Liu, H. (1996). Simulation of spring discharge from a limestone aquifer in Iowa, USA, Hydrogeology Journal 4(4): 41-54. 
  33. Zhao, Z.-Y., Sagara, S. and Wada, K. (1991). Bias-compensating least squares method for identification of continuous-time systems from sampled data, International Journal of Control 53(2): 445-461. Zbl0725.93088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.