A level set method in shape and topology optimization for variational inequalities
Piotr Fulmański; Antoine Laurain; Jean-Francois Scheid; Jan Sokołowski
International Journal of Applied Mathematics and Computer Science (2007)
- Volume: 17, Issue: 3, page 413-430
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Allaire G., De Gournay F., Jouve F. and Toader A.M. (2005): Structural optimizationusing topological and shape sensitivity via a level set method. Control and Cybernetics, Vol.34, No.1, pp.59-80. Zbl1167.49324
- Amstutz S. and Andra H. (2006): A new algorithm for topology optimization using a level-set method. - Journal of Computer Physics, Vol.216, No.2, pp.573-588. Zbl1097.65070
- Delfour M.C. and Zolesio J.-P. (2001): Shapes and Geometries. Philadelphia, PA: SIAM. Zbl1002.49029
- Henrot A. and Pierre M. (2005): Variation et optimisation de formes: Une analyse geometrique. Berlin: Springer.
- Jackowska L., Sokołowski J., Żochowski A. and Henrot A. (2002): On numerical solution of shape inverse problems. - Computational Optimization and Applications, Vol.23, No.2, pp.231-255. Zbl1033.65048
- Jackowska A.L., Sokołowski J. and Żochowski A. (2003): Topological optimization and inverse problems. Computer Assisted Mechanics and Engineering Sciences, Vol.10, No.2, pp.163-176. Zbl1108.74378
- Jarusek J., Krbec M., Rao M. and Sokołowski J. (2003): Conical differentiability for evolution variational inequalities. Journal of Differential Equations, Vol.193, No.1, pp.131-146. Zbl1024.49011
- Laurain A. (2006): Singularly perturbed domains in shape optimization. - Ph.D. thesis, Université de Nancy.
- Masmoudi M. (2002):The topological asymptotic, In: Computational Methods for Control Applications (R.Glowinski, H.Kawarada and J.Periaux, Eds.). GAKUTO Int. Ser. Math. Sci. Appl., Vol.16, pp.53-72. Zbl1082.93584
- Mazya V., Nazarov S.A. and Plamenevskij B. (2000): Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols.1 and 2, Basel: Birkhauser, p.435.
- Nazarov S.A. (1999): Asymptotic conditions at a point, self adjoint extensions of operators, and the method of matched asymptotic expansions. American Mathematical Society Tranations, Vol.198, No.2, pp.77-125.
- Nazarov S.A. and Sokołowski J. (2003a): Self adjoint extensions of differential operators in application to shape optimization. Comptes Rendus Mécanique, Vol.331, No.10, pp.667-672. Zbl1177.74315
- Nazarov S.A. and Sokołowski J. (2003b): Asymptotic analysis of shape functionals. Journal de Mathématiques pures et appliquées, Vol.82, No.2, pp.125-196. Zbl1031.35020
- Nazarov S.A. and Sokołowski J. (2003c): Asymptotic analysis of shape functionals. Journal of de Mathématiques pures et appliquées, Vol.82, No.2, pp.125-196. Zbl1031.35020
- Nazarov S.A. and Sokołowski J. (2004a): Self adjoint extensions for elasticy system in application to shape optimization. Bulletin of the Polish Academy of Sciences, Mathematics, Vol.52, No.3, pp. 237-248. Zbl1102.35312
- Nazarov S.A. and Sokołowski J. (2004b): The topological derivative of the Dirichlet integral due to formation of a thinligament. Siberian Mathematical Journal, Vol.45, No.2, pp.341-355.
- Nazarov S.A., Slutskij A.S. and Sokołowski J. (2005): Topological derivative of the energy functional due to formation of a thin ligament on a spatial body. Folia Mathematicae, Acta Universatis Lodziensis, Vol.12, pp.39-72. Zbl1130.49033
- Osher S. and Fedkiw R. (2004): Level Set Methods and Dynamic Implic Surfaces. New York: Springer. Zbl1026.76001
- Osher S. and Sethian J. (1988): Fronts propagating with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, Vol.79, No.1, pp.12-49. Zbl0659.65132
- Peng D., Merriman B., Osher S., Zhao S. and Kang M. (1999): A PDE-based fast local level set method. Journal of Computational Physics, Vol.155, No.2, pp.410-438. Zbl0964.76069
- Rao M. and Sokołowski J. (2000): Tangent sets in Banach spaces and applications to variational inequalities. Les prépublications de l'Institut Élie Cartan, No.42.
- Sethian J. (1996): Level Set Methods. Cambridge: Cambridge University Press. Zbl0859.76004
- Sokołowski J. and Zolesio J.-P. (1992): Introduction to shape optimization. Series in Computationnal Mathematics, Berlin: Springer Verlag, Vol.16. Zbl0761.73003
- Sokołowski J. and Żochowski A. (1999): On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, Vol.37, No.4, pp.1251-1272. Zbl0940.49026
- Sokołowski J. and Żochowski A. (2001): Topological derivatives of shape functionals for elasticy systems. Mechanics of Structures and Machines, Vol.29, No.3, pp.333-351.
- Sokołowski J. and Żochowski A. (2003): Optimaly conditions for simultaneous topology and shape optimization. SIAM Journal on Control and Optimization, Vol.42, No.4, pp.1198-1221. Zbl1045.49028
- Sokołowski J. and Żochowski A. (2005a): Topological derivatives for contact problems. Numerische Mathematik, Vol.102, No.1, pp.145-179. Zbl1077.74039
- Sokołowski J. and Żochowski A. (2005b): Topological derivatives for obstacle problems. Les prépublications de l'Institut Élie Cartan No.12.
- Watson G.N. (1944):Theory of Bessel Functions. Cambridge: The University Press. Zbl0063.08184
- Zhao H.K., Chan T., Merriman B. and Osher S. (1996): A variational level set approach to multi-phase motion. Journal of Computational Physics, Vol.127, No.1, pp.179-195 Zbl0860.65050
Citations in EuDML Documents
top- Alexander Khludnev, Jan Sokołowski, Katarzyna Szulc, Shape and topological sensitivity analysis in domains with cracks
- Andrzej Myśliński, Topology optimization of systems governed by variational inequalities
- Mohamed Iguernane, Serguei A. Nazarov, Jean-Rodolphe Roche, Jan Sokolowski, Katarzyna Szulc, Topological derivatives for semilinear elliptic equations
- Andrzej Myśliński, Topology optimization of quasistatic contact problems