Controllability and observability of linear discrete-time fractional-order systems

Said Guermah; Said Djennoune; Maamar Bettayeb

International Journal of Applied Mathematics and Computer Science (2008)

  • Volume: 18, Issue: 2, page 213-222
  • ISSN: 1641-876X

Abstract

top
In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.

How to cite

top

Said Guermah, Said Djennoune, and Maamar Bettayeb. "Controllability and observability of linear discrete-time fractional-order systems." International Journal of Applied Mathematics and Computer Science 18.2 (2008): 213-222. <http://eudml.org/doc/207878>.

@article{SaidGuermah2008,
abstract = {In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.},
author = {Said Guermah, Said Djennoune, Maamar Bettayeb},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {system modeling; discrete fractional state-space systems; reachability; controllability; observability; controllability and observability Gramians},
language = {eng},
number = {2},
pages = {213-222},
title = {Controllability and observability of linear discrete-time fractional-order systems},
url = {http://eudml.org/doc/207878},
volume = {18},
year = {2008},
}

TY - JOUR
AU - Said Guermah
AU - Said Djennoune
AU - Maamar Bettayeb
TI - Controllability and observability of linear discrete-time fractional-order systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2008
VL - 18
IS - 2
SP - 213
EP - 222
AB - In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.
LA - eng
KW - system modeling; discrete fractional state-space systems; reachability; controllability; observability; controllability and observability Gramians
UR - http://eudml.org/doc/207878
ER -

References

top
  1. Antsaklis P.J. and Michel A.N. (1997). Linear Systems, McGraw-Hill, New York. 
  2. Åström K. J. and Wittenmark B. (1996). Computer-Controlled Systems, Theory and Design, 3rd Ed., Prentice Hall Inc., New Jersey. 
  3. Axtell M. and Bise E. M. (1990). Fractional calculus applications in control systems, Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, USA, pp. 536-566. 
  4. Battaglia J. L., Cois O., Puigsegur L. and Oustaloup A. (2001). Solving an inverse heat conduction problem using a noninteger identified model, International Journal of Heat and Mass Transfer, 44(14): 2671-2680. Zbl0981.80007
  5. Bettayeb M. and Djennoune S. (2006). A note on the controllability and the observability of fractional dynamical systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Workshop Applications, Porto, Portugal, pp. 506-511. 
  6. Boukas E.K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability, Mathematical Problems in Engineering, bf 2006 (ID42489): 1-10. Zbl1200.93112
  7. Cois O., Oustaloup A., Battaglia E. and Battaglia J.L. (2002). Non integer model from modal decomposition for time domain identification, 41st IEEE CDC'2002 Tutorial Workshop 2, Las Vegas, USA. Zbl0981.80007
  8. Debeljković D. Lj., Aleksendrić M., Yi-Yong N. and Zhang Q. L. (2002). Lyapunov and non-Lyapunov stability of linear discrete time delay systems, Facta Universitatis, Series: Mechanical Engineering 1(9): 1147-1160. 
  9. Dorčák L., Petras I. and Kostial I. (2000). Modeling and analysis of fractional-order regulated systems in the state-space, Procedings of International Carpathian Control Conference, High Tatras, Slovak Republic, pp. 185-188. 
  10. Dzieliński A. and Sierociuk D. (2005). Adaptive feedback control of fractional order discrete state-space systems, Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'05), Vienna Austria, pp. 804-809. 
  11. Dzieliński A. and Sierociuk D. (2006). Observer for discrete fractional order systems, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation Applications, Porto, Portugal, pp. 524-529. Zbl1334.93172
  12. Dzieliński A. and Sierociuk D. (2007). Reachability, controllability and observability of the fractional order discrete statespace system, Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR'2007, Szczecin, Poland, pp. 129-134. Zbl1334.93172
  13. Gorenflo R. and Mainardi F. (1997). Fractional calculus: Integral and differential equations of fractional order, in (A. Carpintieri and F. Mainardi, Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Vienna, New York, Springer Verlag. 
  14. Hanyga A. (2003). Internal variable models of viscoelasticity with fractional relaxation laws, Proceddings of Design Engineering Technical Conference, Mechanical Vibration and Noise, 48395, American Society of Mechanical Engineers, Chicago, USA. 
  15. Hotzel R. and Fliess M.(1998). On linear system with a fractional derivation: Introductory theory and examples, Mathematics and Computers in Simulation 45 (3): 385-395. Zbl1017.93508
  16. Ichise M., Nagayanagi Y. and Kojima T. (1971). An analog simulation of non integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry 33(2): 253-265. 
  17. Kilbas A. A., Srivasta H. M. and Trujillo J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam. 
  18. Lakshmikantham D. T. V. (1998). Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York. 
  19. Manabe S. (1960). The non-integer integral and its application to control systems, Japanese Institute of Electrical Engineers Journal 80(860): 589-597. 
  20. Matignon D. (1994). Reprèsentation en variables d'ètat de modèles de guides d'ondes avec dèrivation fractionnaire, Ph.D. thesis, Universitè Paris XI, France. 
  21. Matignon D., d'Andrèa Novel B., Depalle P. and Oustaloup A. (1994). Viscothermal Losses in Wind Instruments: A NonInteger Model, Academic Verlag, Berlin. 
  22. Matignon D. and d'Andrèa-Novel B. (1996). Some results on controllability and observability of finite-dimensional fractional differential systems, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952-956. 
  23. Matignon D. (1996). Stability results on fractional differential with application to control processing, Proceedings of the IAMCS, IEEE SMC Conference, Lille, France, pp. 963968. 
  24. Miller K. S. and Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York. Zbl0789.26002
  25. Mittag-Leffler G. (1904). Sur la reprèsentation analytique d'une branche uniforme d'une fonction monogène, Acta Mathematica 29: 10-181. Zbl47.0269.04
  26. Oldham K. B. and Spanier J. (1974). The Fractional Calculus, Academic Press, New York. Zbl0292.26011
  27. Oustaloup A. (1983). Systèmes asservis linèaires d'ordre fractionnaire, Masson, Paris. 
  28. Oustaloup A. (1995). La Dèrivation non entière: Thèorie, synthèse et applications, Hermès, Paris. 
  29. Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego. Zbl0924.34008
  30. Peng Y., Guangming X. and Long W. (2003). Controllability of linear discrete-time systems with time-delay in state, available at dean.pku.edu.cn/bksky/1999tzlwj/4.pdf. 
  31. Raynaud H. F., Zergainoh, A. (2000). State-space representation for fractional-order controllers, Automatica 36(7): 10171021. Zbl0964.93024
  32. Sabatier J., Cois O. and Oustaloup A. (2002). Commande de systèmes non entiers par placement de pôles, Deuxième Confèrence Internationale Francophone d'Automatique, CIFA, Nantes, France. 
  33. Samko S. G., Kilbas A. A. and Marichev O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam. Zbl0818.26003
  34. Sierociuk D. and Dzieliński A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140. Zbl1334.93172
  35. Valerio D. and Sa da Costa J. (2004). Non-integer order control of a flexible robot, Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, FDA'04, Bordeaux, France. 
  36. Vinagre B. M., Monje C. A. and Caldero A. J. (2002). Fractional order systems and fractional order actions, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, 41st IEEE CDC, Las Vegas, USA. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.