Natural quantum operational semantics with predicates
Marek Sawerwain; Roman Gielerak
International Journal of Applied Mathematics and Computer Science (2008)
- Volume: 18, Issue: 3, page 341-359
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topMarek Sawerwain, and Roman Gielerak. "Natural quantum operational semantics with predicates." International Journal of Applied Mathematics and Computer Science 18.3 (2008): 341-359. <http://eudml.org/doc/207890>.
@article{MarekSawerwain2008,
abstract = {A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight generalisation of D'Hondt and Panagaden's theorem about the quantum weakest precondition in terms of discrete support positive operator-valued measures.},
author = {Marek Sawerwain, Roman Gielerak},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {quantum computation; predicate notion for quantum programs; quantum labelled transition systems; quantum predicate},
language = {eng},
number = {3},
pages = {341-359},
title = {Natural quantum operational semantics with predicates},
url = {http://eudml.org/doc/207890},
volume = {18},
year = {2008},
}
TY - JOUR
AU - Marek Sawerwain
AU - Roman Gielerak
TI - Natural quantum operational semantics with predicates
JO - International Journal of Applied Mathematics and Computer Science
PY - 2008
VL - 18
IS - 3
SP - 341
EP - 359
AB - A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight generalisation of D'Hondt and Panagaden's theorem about the quantum weakest precondition in terms of discrete support positive operator-valued measures.
LA - eng
KW - quantum computation; predicate notion for quantum programs; quantum labelled transition systems; quantum predicate
UR - http://eudml.org/doc/207890
ER -
References
top- Aceto L. (1994). GSOS and finite labelled transition systems, Theoretical Computer Science 131(1): 181-195. Zbl0822.68060
- de Bakker J. W., de Roever W. P. (1972). A calculus for recursive programs schemes, in: M. Nivat (Ed.), Automata, Languages, and Programming, North-Holland, Amsterdam, pp. 167-196. Zbl0238.68006
- de Bakker J. W., Meertens, L. G. L. T. (1975). On the completeness of the inductive assertion method, Journal of Computer and Systems Sciences 11(3): 323-357. Zbl0353.68040
- Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A. and Wooters W.K. (1993). Teleporting an unknown state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 70(13): 1895-1899. Zbl1051.81505
- Birkhoff G. and von Neumann J. (1936). The logic of quantum mechanics, Annals of Mathematics 37(4): 823-843. Zbl0015.14603
- Bloom B. (1989): Ready Simulation, Bisimulation, and the Semantics of CCS-like Languages, Ph.D. thesis, Massachusetts Institute of Technology.
- Bloom B., Istrail S., Meyer A.R. (1989). Bisimulation can't be traced: Preliminary report, Conference Record of the 15th Annual ACM Symposium on Principles of Programming Languages, San Diego, CA, USA, pp. 229-239. Zbl0886.68027
- Boschi D., Branca S., de Martini F., Hardy L. and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteinPodolsky-Rosen channels, Physical Review Letters 80(6): 1121-1125. Zbl0947.81004
- Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H. and Zeilinger A. (1997). Experimental quantum teleportation, Nature 390(6660): 575-579.
- Choi M.D. (1975). Completely positive linear maps on complex matrices, Linear Algebra and Its Applications 10(3): 285-290. Zbl0327.15018
- Coecke B. and Martin K. (2002). A partial order on classical and quantum states, Technical report, PRG-RR-02-07, Oxford University. Zbl1253.81008
- Deutsch D. and Jozsa R. (1992). Rapid solutions of problems by quantum computation, Proceedings of the Royal Society of London A, 439(1907): 553-558. Zbl0792.68058
- Dijkstra E. W. (1976). A Discipline of Programming, PrenticeHall, Englewood Cliffs, NJ. Zbl0368.68005
- D'Hondt E. and Panangaden P. (2006). Quantum weakest preconditions, Mathematical Structures in Computer Science 16(3): 429-451. Zbl1122.68058
- Gielerak R. and Sawerwain M. (2007). Generalised quantum weakest preconditions, available at: arXiv:quant-ph/0710.5239v1. Zbl1197.81047
- Gleason A. M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics 6(4): 885-893. Zbl0078.28803
- Grover L. K. (1996). A fast quantum-mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, ACM Press, New York, NY, pp. 212-219. Zbl0922.68044
- Hirvensalo M. (2001). Quantum Computing, Springer-Verlag, Berlin. Zbl0976.68063
- Hoare C. (1969). An axiomatic basis for computer programming, Communications of the ACM 12(10): 576-583. Zbl0179.23105
- Jozsa R. (2005). An introduction to measurement based quantum computation, available at: arXiv:quant-ph/0508124.
- Kraus K. (1983). State, Effects, and Operations, Springer, Berlin.
- Kak S. (2003). Teleportation protocols requiring only one classical bit, available at: arXiv:quant-ph/0305085v4.
- Lalire M., Jorrand P. (2004). A process algebraic approach to concurrent and distributed quantum computation: Operational semantics, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland, pp. 109-126.
- Löwner K. (1934): Über monotone Matrixfunktionen, Mathematische Zeitschrift 38(1): 177-216. Zbl0008.11301
- Mlnařík H. (2006): LanQ-Operational Semantics of Quantum Programming Language LanQ, Technical report FIMURS-2006-10, available at: http://www.muni.cz/research/publications/706560.
- Mauerer W. (2005). Semantics and simulation of communication in quantum programming, M.Sc. thesis, University Erlangen-Nuremberg Erlangen, Nürnberg, see: arXiv:quant-ph/0511145.
- Ömer B. (2005). Classical concepts in quantum programming, International Journal of Theoretical Physics, 44(7): 943-955, see: arXiv:quant-ph/0211100. Zbl1119.81316
- Peres A. (1995). Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht. Zbl0867.00010
- Plotkin G.D. (2004). A structural approach to operational semantics, Journal of Logic and Algebraic Programming 60: 17-139. Zbl1082.68062
- Raynal P. (2006). Unambiguous state discrimination of two density matrices in quantum information theory, Ph.D. thesis, Institut für Optik, Information und Photonik, Max Planck Forschungsgruppe, see: arXiv:quant-ph/0611133.
- Rüdiger R. (2007). Quantum programming languages: An introductory overview, The Computer Journal 50(2): 134-150.
- Raussendorf R., Briegel H.J. (2001). A one-way quantum computer, Physical Review Letters 86(22): 5188-5191, see: arXiv:quant-ph/0010033.
- Raussendorf R., Browne D.E., Briegel H.J. (2003). Measurement-based quantum computation with cluster states, Physical Review A, 68(2), 022312, see: arXiv:quant-ph/0301052.
- Sawerwain M., Gielerak R. and Pilecki J. (2006). Operational semantics for quantum computation, in: Węgrzyn S., Znamirowski L., Czachórski T., Kozielski S. (Eds.), New Technologies in Computer Networks, WKiŁ, Warsaw, Vol. 1, pp. 69-77, (in Polish).
- Selinger P.: (2004): Towards a quantum programming language, Mathematical Structures in Computer Science 14(5): 527-586. Zbl1085.68014
- Selinger P.: (2004). Towards a semantics for higher order quantum computation, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland, pp. 127-143.
- Sewell G.: (2005). On the mathematical structure of quantum measurement theory, Reports on Mathematical Physics 56(2): 271-290, see: arXiv:math-ph/0505032. Zbl1086.81016
- Shor P. (2004). Progress in quntum algorithms, Quantum Information Processing 3(1): 5-13. Zbl1075.68602
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.