Natural quantum operational semantics with predicates

Marek Sawerwain; Roman Gielerak

International Journal of Applied Mathematics and Computer Science (2008)

  • Volume: 18, Issue: 3, page 341-359
  • ISSN: 1641-876X

Abstract

top
A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight generalisation of D'Hondt and Panagaden's theorem about the quantum weakest precondition in terms of discrete support positive operator-valued measures.

How to cite

top

Marek Sawerwain, and Roman Gielerak. "Natural quantum operational semantics with predicates." International Journal of Applied Mathematics and Computer Science 18.3 (2008): 341-359. <http://eudml.org/doc/207890>.

@article{MarekSawerwain2008,
abstract = {A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight generalisation of D'Hondt and Panagaden's theorem about the quantum weakest precondition in terms of discrete support positive operator-valued measures.},
author = {Marek Sawerwain, Roman Gielerak},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {quantum computation; predicate notion for quantum programs; quantum labelled transition systems; quantum predicate},
language = {eng},
number = {3},
pages = {341-359},
title = {Natural quantum operational semantics with predicates},
url = {http://eudml.org/doc/207890},
volume = {18},
year = {2008},
}

TY - JOUR
AU - Marek Sawerwain
AU - Roman Gielerak
TI - Natural quantum operational semantics with predicates
JO - International Journal of Applied Mathematics and Computer Science
PY - 2008
VL - 18
IS - 3
SP - 341
EP - 359
AB - A general definition of a quantum predicate and quantum labelled transition systems for finite quantum computation systems is presented. The notion of a quantum predicate as a positive operator-valued measure is developed. The main results of this paper are a theorem about the existence of generalised predicates for quantum programs defined as completely positive maps and a theorem about the existence of a GSOS format for quantum labelled transition systems. The first theorem is a slight generalisation of D'Hondt and Panagaden's theorem about the quantum weakest precondition in terms of discrete support positive operator-valued measures.
LA - eng
KW - quantum computation; predicate notion for quantum programs; quantum labelled transition systems; quantum predicate
UR - http://eudml.org/doc/207890
ER -

References

top
  1. Aceto L. (1994). GSOS and finite labelled transition systems, Theoretical Computer Science 131(1): 181-195. Zbl0822.68060
  2. de Bakker J. W., de Roever W. P. (1972). A calculus for recursive programs schemes, in: M. Nivat (Ed.), Automata, Languages, and Programming, North-Holland, Amsterdam, pp. 167-196. Zbl0238.68006
  3. de Bakker J. W., Meertens, L. G. L. T. (1975). On the completeness of the inductive assertion method, Journal of Computer and Systems Sciences 11(3): 323-357. Zbl0353.68040
  4. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A. and Wooters W.K. (1993). Teleporting an unknown state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 70(13): 1895-1899. Zbl1051.81505
  5. Birkhoff G. and von Neumann J. (1936). The logic of quantum mechanics, Annals of Mathematics 37(4): 823-843. Zbl0015.14603
  6. Bloom B. (1989): Ready Simulation, Bisimulation, and the Semantics of CCS-like Languages, Ph.D. thesis, Massachusetts Institute of Technology. 
  7. Bloom B., Istrail S., Meyer A.R. (1989). Bisimulation can't be traced: Preliminary report, Conference Record of the 15th Annual ACM Symposium on Principles of Programming Languages, San Diego, CA, USA, pp. 229-239. Zbl0886.68027
  8. Boschi D., Branca S., de Martini F., Hardy L. and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteinPodolsky-Rosen channels, Physical Review Letters 80(6): 1121-1125. Zbl0947.81004
  9. Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H. and Zeilinger A. (1997). Experimental quantum teleportation, Nature 390(6660): 575-579. 
  10. Choi M.D. (1975). Completely positive linear maps on complex matrices, Linear Algebra and Its Applications 10(3): 285-290. Zbl0327.15018
  11. Coecke B. and Martin K. (2002). A partial order on classical and quantum states, Technical report, PRG-RR-02-07, Oxford University. Zbl1253.81008
  12. Deutsch D. and Jozsa R. (1992). Rapid solutions of problems by quantum computation, Proceedings of the Royal Society of London A, 439(1907): 553-558. Zbl0792.68058
  13. Dijkstra E. W. (1976). A Discipline of Programming, PrenticeHall, Englewood Cliffs, NJ. Zbl0368.68005
  14. D'Hondt E. and Panangaden P. (2006). Quantum weakest preconditions, Mathematical Structures in Computer Science 16(3): 429-451. Zbl1122.68058
  15. Gielerak R. and Sawerwain M. (2007). Generalised quantum weakest preconditions, available at: arXiv:quant-ph/0710.5239v1. Zbl1197.81047
  16. Gleason A. M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics 6(4): 885-893. Zbl0078.28803
  17. Grover L. K. (1996). A fast quantum-mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, ACM Press, New York, NY, pp. 212-219. Zbl0922.68044
  18. Hirvensalo M. (2001). Quantum Computing, Springer-Verlag, Berlin. Zbl0976.68063
  19. Hoare C. (1969). An axiomatic basis for computer programming, Communications of the ACM 12(10): 576-583. Zbl0179.23105
  20. Jozsa R. (2005). An introduction to measurement based quantum computation, available at: arXiv:quant-ph/0508124. 
  21. Kraus K. (1983). State, Effects, and Operations, Springer, Berlin. 
  22. Kak S. (2003). Teleportation protocols requiring only one classical bit, available at: arXiv:quant-ph/0305085v4. 
  23. Lalire M., Jorrand P. (2004). A process algebraic approach to concurrent and distributed quantum computation: Operational semantics, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland, pp. 109-126. 
  24. Löwner K. (1934): Über monotone Matrixfunktionen, Mathematische Zeitschrift 38(1): 177-216. Zbl0008.11301
  25. Mlnařík H. (2006): LanQ-Operational Semantics of Quantum Programming Language LanQ, Technical report FIMURS-2006-10, available at: http://www.muni.cz/research/publications/706560. 
  26. Mauerer W. (2005). Semantics and simulation of communication in quantum programming, M.Sc. thesis, University Erlangen-Nuremberg Erlangen, Nürnberg, see: arXiv:quant-ph/0511145. 
  27. Ömer B. (2005). Classical concepts in quantum programming, International Journal of Theoretical Physics, 44(7): 943-955, see: arXiv:quant-ph/0211100. Zbl1119.81316
  28. Peres A. (1995). Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht. Zbl0867.00010
  29. Plotkin G.D. (2004). A structural approach to operational semantics, Journal of Logic and Algebraic Programming 60: 17-139. Zbl1082.68062
  30. Raynal P. (2006). Unambiguous state discrimination of two density matrices in quantum information theory, Ph.D. thesis, Institut für Optik, Information und Photonik, Max Planck Forschungsgruppe, see: arXiv:quant-ph/0611133. 
  31. Rüdiger R. (2007). Quantum programming languages: An introductory overview, The Computer Journal 50(2): 134-150. 
  32. Raussendorf R., Briegel H.J. (2001). A one-way quantum computer, Physical Review Letters 86(22): 5188-5191, see: arXiv:quant-ph/0010033. 
  33. Raussendorf R., Browne D.E., Briegel H.J. (2003). Measurement-based quantum computation with cluster states, Physical Review A, 68(2), 022312, see: arXiv:quant-ph/0301052. 
  34. Sawerwain M., Gielerak R. and Pilecki J. (2006). Operational semantics for quantum computation, in: Węgrzyn S., Znamirowski L., Czachórski T., Kozielski S. (Eds.), New Technologies in Computer Networks, WKiŁ, Warsaw, Vol. 1, pp. 69-77, (in Polish). 
  35. Selinger P.: (2004): Towards a quantum programming language, Mathematical Structures in Computer Science 14(5): 527-586. Zbl1085.68014
  36. Selinger P.: (2004). Towards a semantics for higher order quantum computation, Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland, pp. 127-143. 
  37. Sewell G.: (2005). On the mathematical structure of quantum measurement theory, Reports on Mathematical Physics 56(2): 271-290, see: arXiv:math-ph/0505032. Zbl1086.81016
  38. Shor P. (2004). Progress in quntum algorithms, Quantum Information Processing 3(1): 5-13. Zbl1075.68602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.