A new efficient and flexible algorithm for the design of testable subsystems
Stéphane Ploix; Abed Alrahim Yassine; Jean-Marie Flaus
International Journal of Applied Mathematics and Computer Science (2010)
- Volume: 20, Issue: 1, page 175-190
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Blanke, M., Kinnaert, M. and Staroswiecki, M. (2003). Diagnosis and Fault Tolerant Control, Springer, Berlin. Zbl1023.93001
- Cassar, J. and Staroswiecki, M. (1997). A structural approach for the design of failure detection and identification systems, IFAC, IFIP, IMACS Conference on Control of Industrial Systems, Belfort, France, pp. 329-334.
- Chittaro, L. and Ranon, R. (2004). Hierarchical model-based diagnosis based on structural abstraction, Artificial Intelligence 155(1-2): 147-182. Zbl1085.68723
- Codd, E. (1970). A relational model of data for large shared data banks, Communications of the ACM 13(6): 377-387. Zbl0207.18003
- Console, L., Picardi, C. and Ribando, M. (2000). Diagnosis and diagnosability analysis using process algebra, Proceedings of the Eleventh International Workshop on Principles of Diagnosis (DX-00), MX, Morelia, Mexico, pp. 25-32.
- Dague, P. (2001). Théorie logique du diagnostic à base de modèles, in B. Dubuisson (Ed.), Diagnostic, Intelligence artificielle et reconnaissance de formes, Hermès Science, Paris, pp. 17-104.
- Davis, R. (1984). Diagnostic reasoning based on structure and behavior, Artificial Intelligence 24(1-3): 347-410.
- De Kleer, J. and Williams, B. C. (1987). Diagnosing multiple faults, Artificial Intelligence 32(1): 97-130. Zbl0642.94045
- de Kleer, J. and Williams, B. C. (1992). Diagnosis with behavioral modes, in W.C. Hamscher, I.de Kleer and L. Console (Eds), Readings in Model-Based Diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 124-130.
- Dechetr, R. (2003). Constraint Processing, Morgan Kaufmann Publishers, San Francisco, CA.
- Declerck, P. and Staroswiecki, M. (1991). Characterization of the canonical components of a structural graph for fault detection in large scale industrial plants, European Control Conference, Grenoble, France, pp. 298-303.
- Dulmage, A. L. and Mendelsohn, N. S. (1959). A structure theory of bi-partite graphs of finite exterior extension, Transactions of the Royal Society of Canada 53(III): 1-13. Zbl0091.37502
- Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-A survey and some new results, Automatica 26(3): 459-471. Zbl0713.93052
- Frisk, E. (2000). Residual generator for non-linear polynomial systems-A Grobner basis approach, IFAC Fault Detection, Supervision and Safety for Technical Processes, Budapest, Hungary, pp. 979-984.
- Fron, A. (1994). Programmation par contraintes, AddisonWesley, Paris.
- Górny, B. and Ligęza, A. (2001). Review of systematic conflict generation in model-based diagnosis of dynamic systems, IFAC Workshop on Manufacturing, Modelling Manageent and Control, Prague, Czech Republic, pp. 86-91.
- Iwasaki, Y. and Simo, H. A. (1994). Causality and model abstraction, Artificial Intelligence 67(1): 143-194. Zbl0942.68711
- Krysander, M., Åslund, J. and Nyberg, M. . (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based-diagnosis, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 38(1): 197-206.
- Krysander, M., Aslund, J. and Nyberg, M. (2005). An efficient algorithm for finding over-constrained sub-systems for construction of diagnostic tests, 16th International Workshop on Principles of Diagnosis (DX-05), Pacific Grove, CA, USA.
- Ligęza, A. and Górny, B. (2000). Systematic conflict generation in model-based diagnosis, SAFEPROCESS'2000: 4th IFAC Symposium on Fault Detection and Supervision and Safety for Technological Processes, Budapest, Hungary, Vol. II, pp. 1103-1108.
- Mishra, P. and Eich, M. (1992). Join processing in relational databases, ACM Computing Surveys 24(1): 63-113.
- Nayak, P. P. and Levy, A. Y. (1995). A semantic theory of abstractions, 14th International Joint Conference on Artificial Intelligence IJCAI-95, Montreal, Canada, pp. 196-203.
- Nyberg, M. and Krysander, M. (2003). Combining AI, FDI, and statistical hypothesis-testing in a framework for diagnosis, IFAC SAFEPROCESS'03, Washington, DC, USA, pp. 813-818.
- Patton, R., Frank, P. and Clark (Eds), R. (1989). Fault Diagnosis in Dynamic Systems, International Series in Systems and Control Engineering, Prentice Hall, London.
- Ploix, S., Désinde, M. and Michau, F. (2004). Assessment and diagnosis for virtual reality training, International Symposium on Advanced Robot Systems and Virtual Reality, Grenoble, France.
- Ploix, S., Desinde, M. and Touaf, S. (2005). Automatic design of detection tests in complex dynamic systems, 16th IFAC World Congress, Prague, Czech Republic.
- Ploix, S., Touaf, S. and Flaus, J. M. (2003). A logical framework for isolation in fault diagnosis, SAFEPROCESS'2003, Washington, DC, USA.
- Pulido, B. and Alonso, C. (2002). Possible conflicts, arrs, and conflicts, 13th International Workshop on Principles of Diagnosis (DX02), Semmering, Austria, pp. 122-128.
- Reiter, R. (1987). A theory of diagnosis from first principles, Artificial Intelligence 32(1): 57-95. Zbl0643.68122
- Russell, S. and Norvig, P. (2003). Artificial Intelligence, A Modern Approach, 2nd Ed., Prentice Hall, Upper Saddle River, NJ. Zbl0835.68093
- Staroswiecki, M., Cocquempot, V. and Cassar, J. P. (1991). Observer based and parity space approaches for failure detection and identification, IMACS-IFAC International Symposium, Lille, France, Vol. 25, pp. 536-541.
- Staroswiecki, M. and Declerck, P. (1989). Analytical redundancy in nonlinear interconnected systems by means of structural analysis, IFAC AIPAC'89 Symposium, Nantes, France, Vol. 2, pp. 23-27.
- Struss, P. (1992). What's in SD? Towards a theory of modeling for diagnosis, in W. Hamscher, L. Console and J. De Kleer (Eds), Readings in Model-Based Diagnosis, Morgan Kaufman, San Francisco, CA, pp. 419-448.
- Travé-Massuyès, L., Escobet, T. and Olive, X. (2006). Diagnosability analysis based on component supported analytical redundancy relations, IEEE Transactions on Systems, Man, And Cybernetics-Part A: Systems and Humans 36(6): 1146-1160.
- Travé-Massuyès, L., Escobet, T. and Spanache, S. (2003). Diagnosability analysis based on component supported analytical redundancy relations, IFAC Workshop SAFEPROCESS'2003, Washington, DC, USA, pp.897-902.
- Willsky, A. (1976). A survey of design methods for failure detection in dynamic systems, Automatica 21(4): 601-611. Zbl0345.93067