Sensors and boundary state reconstruction of hyperbolic systems
El Hassan Zerrik; Hamid Bourray; Samir Ben Hadid
International Journal of Applied Mathematics and Computer Science (2010)
- Volume: 20, Issue: 2, page 227-238
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topEl Hassan Zerrik, Hamid Bourray, and Samir Ben Hadid. "Sensors and boundary state reconstruction of hyperbolic systems." International Journal of Applied Mathematics and Computer Science 20.2 (2010): 227-238. <http://eudml.org/doc/207982>.
@article{ElHassanZerrik2010,
abstract = {This paper deals with the problem of regional observability of hyperbolic systems in the case where the subregion of interest is a boundary part of the system evolution domain. We give a definition and establish characterizations in connection with the sensor structure. Then we show that it is possible to reconstruct the system state on a subregion of the boundary. The developed approach, based on the Hilbert uniqueness method (Lions, 1988), leads to a reconstruction algorithm. The obtained results are illustrated with numerical examples and simulations.},
author = {El Hassan Zerrik, Hamid Bourray, Samir Ben Hadid},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {distributed systems; hyperbolic systems; regional observability; boundary reconstruction; strategic sensor},
language = {eng},
number = {2},
pages = {227-238},
title = {Sensors and boundary state reconstruction of hyperbolic systems},
url = {http://eudml.org/doc/207982},
volume = {20},
year = {2010},
}
TY - JOUR
AU - El Hassan Zerrik
AU - Hamid Bourray
AU - Samir Ben Hadid
TI - Sensors and boundary state reconstruction of hyperbolic systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2010
VL - 20
IS - 2
SP - 227
EP - 238
AB - This paper deals with the problem of regional observability of hyperbolic systems in the case where the subregion of interest is a boundary part of the system evolution domain. We give a definition and establish characterizations in connection with the sensor structure. Then we show that it is possible to reconstruct the system state on a subregion of the boundary. The developed approach, based on the Hilbert uniqueness method (Lions, 1988), leads to a reconstruction algorithm. The obtained results are illustrated with numerical examples and simulations.
LA - eng
KW - distributed systems; hyperbolic systems; regional observability; boundary reconstruction; strategic sensor
UR - http://eudml.org/doc/207982
ER -
References
top- Amouroux, A., El Jai, M. and Zerrik, E. (1994). Regional observability of distributed systems, International Journal of Systems Science 25(2): 301-313. Zbl0812.93015
- Avdonin, S.A. and Ivanov, S.A. (1995). Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, NY/London/Melbourne. Zbl0866.93001
- Avdonin, S.A. and Ivanov, S.A. (1995). Boundary controllability problems for the wave equation in a parallelepiped, Applied Mathematic Letters 8(2): 97-102. Zbl0822.93011
- Avdonin, S.A., Ivanov, S.A. and Joó, I. (1995). Exponential series in the problem of initial and pointwise control of a rectangular vibrating membrane, Studia Scientiarium Mathematicarum Hungarica 30(3-4): 243-259. Zbl0863.93041
- Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinite Dimensional Linear Systems Theory, Texts in Applied Mathematics, Vol. 21, Springer-Verlag, New York, NY. Zbl0839.93001
- Curtain, R.F. and Pritchard, A.J. (1978). Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, NY. Zbl0389.93001
- Dolecki, S. and Russel, D. (1977). A general theory of observation and control, SIAM Journal of Control 15(2): 185-220. Zbl0353.93012
- El Jai, A. and Pritchard, A.J. (1988). Sensors and Actuators in Distributed Systems Analysis, J. Wiley, New York, NY. Zbl0637.93001
- Kobayashi, T. (1980). Discrete-time observability for distributed parameter systems, International Journal of Control 31(1): 181-193. Zbl0462.93011
- Lions, J.L. and Magenes, E. (1968). Problèmes aux limites non homogènes et applications, Vols. 1 et 2, Dunod, Paris. Zbl0165.10801
- Lions, J.L. (1968). Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris. Zbl0179.41801
- Lions, J.L. (1988). Contrôlabilité Exacte. Perturbations et Stabilisation des Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Masson, Paris. Zbl0653.93002
- Li, D., Gilliam, Z. and Martin, C. (1988). Discrete observavility of the heat equation on bounded domain, International Journal of Control 48(2): 755-780. Zbl0654.93008
- Micheletti, A. M. (1976). Perturbazione dello specttro di Un operatore ellitico di tipo variazionale, in relazione ad Una variazione del compo, Ricerche di matematica, V. XXV, Fasc. II. Zbl0355.35066
- Zerrik, E., Bourray, H. and Boutoulout, A. (2002). Regional boundary observability, numerical approach, International Journal of Applied Mathematics and Computer Science 12(2): 143-151. Zbl1140.93328
- Zerrik, E., Ben Hadid, S. and Bourray, H. (2007). Sensors and regional observability of hyperbolic systems, Sensors and Actuator Journal 138(2): 313-328.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.