KHM clustering technique as a segmentation method for endoscopic colour images
Mariusz Frąckiewicz; Henryk Palus
International Journal of Applied Mathematics and Computer Science (2011)
- Volume: 21, Issue: 1, page 203-209
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA. Zbl0503.68069
- Borsotti, M., Campadelli, P. and Schettini, R. (1998). Quantitative evaluation of color image segmentation results, Pattern Recognition Letters 19(8): 741-747. Zbl0908.68204
- Cheng, H., Jiang, X., Sun, Y. and Wang, J. (2001). Color image segmentation: Advances and prospects, Pattern Recognition 34(12): 2259-2281. Zbl0991.68137
- Frąckiewicz, M. and Palus, H. (2009a). Initialization methods for clustering in colour image quantization, Proceedings of the 7th Conference on Computer Methods and Systems (CMS'09), Cracow, Poland, pp. 469-472.
- Frąckiewicz, M. and Palus, H. (2009b). KM and KHM clustering techniques: Computing acceleration by multithread programming, Proceedings of the 7th Conference on Computer Methods and Systems (CMS'09), Cracow, Poland, pp. 333-338.
- Hamerly, G.J. (2003). Learning Structure and Concepts in Data through Data Clustering, Ph.D. thesis, University of California, San Diego, CA.
- Linde, Y., Buzo, A. and Gray, R. (1980). An algorithm for vector quantizer design, IEEE Transactions on Communications 28(1): 84-95.
- Lloyd, S. (1982). Least squares quantization in PCM, IEEE Transactions on Information Theory 28(2): 129-137. Zbl0504.94015
- MacQuenn, J. (1967). Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematics, Statistics, and Probabilities, Berkeley CA, USA, pp. 281-297.
- Palus, H. (2006). Color image segmentation: Selected techniques, in R. Lukac and K. Plataniotis (Eds.), Color Image Processing: Methods and Applications, CRC Press, Boca Raton, FL, pp. 103-108.
- Zhang, B. (2000). Generalized k-harmonic means-Boosting in unsupervised learning, Technical Report TR HPL-2000137, Hewlett Packard Labs, Palo Alto, CA.
- Zhang, B., Hsu, M. and Dayal, U. (1999). K-harmonic means - Data clustering algorithm, Technical Report TR HPL1999-124, Hewlett Packard Labs, Palo Alto, CA. Zbl0987.68917
Citations in EuDML Documents
top- Damian Bogdanowicz, Krzysztof Giaro, On a matching distance between rooted phylogenetic trees
- Tomasz Markiewicz, Mirosław Dziekiewicz, Marek Maruszyński, Romana Bogusławska-Walecka, Wojciech Kozłowski, Recognition of atherosclerotic plaques and their extended dimensioning with computerized tomography angiography imaging
- Kristian Sabo, Center-based l₁-clustering method
- Anna Fabijańska, Tomasz Węgliński, Krzysztof Zakrzewski, Emilia Nowosławska, Assessment of hydrocephalus in children based on digital image processing and analysis