Center-based l₁-clustering method
International Journal of Applied Mathematics and Computer Science (2014)
- Volume: 24, Issue: 1, page 151-163
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Angulo, J. and Serra, J. (2007). Modelling and segmentation of colour images in polar representations, Image and Vision Computing 25(4): 475-495.
- Äyrämö, S. (2006). Knowledge Mining Using Robust Clustering, Ph.D. thesis, University of Jyväskylä, Jyväskylä.
- Bagirov, A.M. and Ugon, J. (2005). An algorithm for minimizing clustering functions, Optimization 54(4-5): 351-368. Zbl1122.90059
- Bagirov, A.M., Ugon, J. and Webb, D. (2011). Fast modified global k-means algorithm for incremental cluster construction, Pattern Recognition 44(4): 886-876. Zbl1213.68514
- Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA. Zbl0503.68069
- Boyd, D.L. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge. Zbl1058.90049
- Chaovalitwongse, W.A., Butenko, S. and Pardalos, P.M., (Eds.) (2009). Clustering Challenges in Biological Networks, World Scientific, London.
- Choulakian, V. (2001). Robust q-mode principal component analysis in L₁, Computational Statistics & Data Analysis, 37(2): 135-150. Zbl1030.62050
- Clarke, F. H., (1990). Optimization and Nonsmooth Analysis, SIAM, Philadelphia, PA. Zbl0696.49002
- Cominetti, R. and Michelot, C. (1997). Sufficient conditions for coincidence in l₁-minisum multifacility location problems, Operations Research Letters 20(4): 179-185. Zbl0879.90131
- Cord, A., Ambroise, C. and Cocquerez, J.-P. (2006). Feature selection in robust clustering based on Laplace mixture, Pattern Recognition Letters 27(6): 627-635.
- Cupec, R., Grbić, R., Sabo, K. and Scitovski, R. (2009). Three points method for searching the best least absolute deviations plane, Applied Mathematics and Computation 215(3): 983-994. Zbl1176.65017
- Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley, New York, NY. Zbl0968.68140
- Finkel, D.E. and Kelley, C.T. (2006). Additive scaling and the DIRECT algorithm, Journal of Global Optimization 36(4): 597-608. Zbl1142.90488
- Floudas, C.A. and Gounaris, C.E. (2009). A review of recent advances in global optimization, Journal of Global Optimization 45(4): 3-38. Zbl1180.90245
- Frąckiewicz, M. and Palus, H. (2011). KHM clustering techique as a segmentation method for endoscopic colour images, International Journal of Applied Mathematics and Computer Science 21(1): 203-209, DOI: 10.2478/v10006-011-0015-0.
- Gan, G., Ma, C. and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, SIAM, Philadelphia, PA. Zbl1185.68274
- Grbić, R., Nyarko, E.K. and Scitovski, R. (2012). A modification of the direct method for Lipschitz global optimization for a symmetric function, Journal of Global Optimization, 57(4): 1193-1212, DOI: 10.1007/s10898-012-0020-3. Zbl1279.65076
- Grbić, R., Scitovski, K., Sabo, K. and Scitovski, R. (2013). Approximating surfaces by the moving least absolute deviations method, Applied Mathematics and Computation 219(9): 4387-4399. Zbl06447249
- Gurwitz, C. (1990). Weighted median algorithms for l₁ approximation, BIT 30(2): 301-310. Zbl0704.65044
- Hathaway, R.J. and Bezdek, J.C. (2001). Fuzzy c-means clustering of incomplete data, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31(5): 735-744.
- Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal of Classification 2(1): 193-218. Zbl0587.62128
- Jain, A. (2010). 50 years beyond k-means, Pattern Recognition Letters 31(8): 651-666.
- Jajuga, K. (1987). A clustering method based on the L₁-norm, Computational Statistics & Data Analysis 5(4): 357-371. Zbl0624.62058
- Jajuga, K. (1991). L₁-norm based fuzzy clustering, Fuzzy Sets and Systems 39(1): 43-50. Zbl0714.62052
- Iyigun, C. (2007). Probabilistic Distance Clustering, Ph.D. thesis, Graduate School, Rutgers, New Brunswick, NJ.
- Jones, D.R., Perttunen, C.D. and Stuckman, B.E. (1993). Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications 79(1): 157-181. Zbl0796.49032
- Jörnsten, R. (2004). Clustering and classification based on the L₁ data depth, Journal of Multivariate Analysis 90(1): 67-89. Zbl1047.62064
- Kogan, J. (2007). Introduction to Clustering Large and High-Dimensional Data, Cambridge University Press, Cambridge. Zbl1183.62106
- Leisch, F. (2006). A toolbox for k-centroids cluster analysis, Computational Statistics & Data Analysis 51(2): 526-544. Zbl1157.62439
- Li, X. Hu, W., Wang, H. and Zhang, Z. (2010). Linear discriminant analysis using rotational invariant L₁ norm, Neurocomputing 73(13-15): 2571-2579.
- Scitovski, R. and Scitovski, S. (2013). A fast partitioning algorithm and its application to earthquake investigation, Computers and Geosciences 59(1): 124-131.
- Simiński, K. (2012). Neuro-rough-fuzzy approach for regression modelling from missing data, International Journal of Applied Mathematics and Computer Science 22(2): 461-476, DOI: 10.2478/v10006-012-0035-4. Zbl1283.93165
- Späth, H. (1976). L₁-cluster analysis, Computing 16(4): 379-387. Zbl0322.65008
- Späth, H. (1987). Using the L₁-norm within cluster analysis, in Y. Dodge (Ed.), Proceedings of the First International Conference on Statistical Data Analysis Based on the L₁-Norm and Related Methods, University of Neuchatel/Switzerland, August 31-September 04, 1987, Elsevier, Amsterdam, pp. 427-434.
- Malinen, M.I. and Fränti, P. (2012). Clustering by analytic functions, Information Sciences 217(1): 31-38.
- Meng, D., Zhao, Q and Xu, Z. (2012). Improve robustness of sparse PCA by L₁-norm maximization, Pattern Recognition 45(1): 487-497. Zbl1225.68202
- Pintér, J.D. (1996). Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications), Kluwer Academic Publishers, Dordrecht. Zbl0842.90110
- Ruszczynski, A (2006). Nonlinear Optimization, Princeton University Press, Princeton/Oxford, NJ. Zbl1108.90001
- Sabo, K. and Scitovski, R. (2008). The best least absolute deviations line-properties and two efficient methods, ANZIAM Journal 50(2): 185-198. Zbl1182.65023
- Sabo, K., Scitovski, R. and Vazler, I. (2011). Searching for a best LAD-solution of an overdetermined system of linear equations motivated by searching for a best LAD-hyperplane on the basis of given data, Journal of Optimization Theory and Applications 149(2): 293-314. Zbl1219.90125
- Sabo, K., Scitovski, R. and Vazler, I. (2012). One-dimensional center-based l₁-clustering method, Optimization Letters 7(1): 5-22 Zbl1283.90034
- Sabo, K., Scitovski, R., Vazler, I. and Zekić-Sušac, M. (2011). Mathematical models of natural gas consumption, Energy Conversion and Management 52(3): 1721-1727.
- Teboulle, M. (2007). A unified continuous optimization framework for center-based clustering methods, Journal of Machine Learning Research 8(1): 65-102. Zbl1222.68318
- Vardi, Y., Zhang, C. H. (2000). The multivariate L₁-median and associated data depth, Proceedings of the National Academy of Sciences, United States of America 97(4): 1423-1426. Zbl1054.62067
- Vazler, I., Sabo, K. and Scitovski, R. (2012). Weighted median of the data in solving least absolute deviations problems, Communications in Statistics-Theory and Methods 41(8): 1455-1465. Zbl1319.62141
- Zhang, J., Peng, L., Zhao, X. and Kuruoglu E.E. (2012). Robust data clustering by learning multi-metric -norm distances, Expert Systems with Applications 39(1): 335-349.
Citations in EuDML Documents
top- Tomasz Zok, Maciej Antczak, Martin Riedel, David Nebel, Thomas Villmann, Piotr Lukasiak, Jacek Blazewicz, Marta Szachniuk, Building the library of RNA 3D nucleotide conformations using the clustering approach
- Michał Muszyński, Stanisław Osowski, Data mining methods for gene selection on the basis of gene expression arrays