# Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems

Mikołaj Busłowicz; Andrzej Ruszewski

International Journal of Applied Mathematics and Computer Science (2012)

- Volume: 22, Issue: 2, page 401-408
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topMikołaj Busłowicz, and Andrzej Ruszewski. "Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems." International Journal of Applied Mathematics and Computer Science 22.2 (2012): 401-408. <http://eudml.org/doc/208117>.

@article{MikołajBusłowicz2012,

abstract = {Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.},

author = {Mikołaj Busłowicz, Andrzej Ruszewski},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {continuous-discrete system; hybrid system; stability; computer methods},

language = {eng},

number = {2},

pages = {401-408},

title = {Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems},

url = {http://eudml.org/doc/208117},

volume = {22},

year = {2012},

}

TY - JOUR

AU - Mikołaj Busłowicz

AU - Andrzej Ruszewski

TI - Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems

JO - International Journal of Applied Mathematics and Computer Science

PY - 2012

VL - 22

IS - 2

SP - 401

EP - 408

AB - Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.

LA - eng

KW - continuous-discrete system; hybrid system; stability; computer methods

UR - http://eudml.org/doc/208117

ER -

## References

top- Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 3, pp. 682-685.
- Bistritz, Y. (2004). Immittance and telepolation-based procedures to test stability of continuous-discrete bivariate polynomials, Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, Vol. 3, pp. 293-296.
- Busłowicz, M. (1997). Stability of Linear Time-invariant Systems with Uncertain Parameters, Technical University of Białystok, Białystok, (in Polish). Zbl0906.34051
- Busłowicz, M. (2010a). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 561-565. Zbl1225.34020
- Busłowicz, M. (2010b). Stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.
- Busłowicz, M. (2011a). Computational methods for investigation of stability of models of 2D continuous-discrete linear systems, Journal of Automation, Mobile Robotics and Intelligent Systems 5(1): 3-7.
- Busłowicz, M. (2011b). Improved stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.
- Busłowicz, M. and Ruszewski, A. (2011). Stability investigation of continuous-discrete linear systems, Pomiary, Automatyka, Robotyka 2(2): 566-575, (on CD-ROM, in Polish).
- Dymkov, M. (2005). Extremal Problems in Multiparameter Control Systems, BGEU Press, Minsk, (in Russian).
- Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D.H. (2004). Control theory for a class of 2D continuousdiscrete linear systems, International Journal of Control 77(9): 847-860. Zbl1060.93055
- Dymkov M., Rogers E., Dymkou S., Gałkowski, K. and Owens D.H. (2003). Delay system approach to linear differential repetitive processes, Proceedings of the IFAC Workshop on Time-Delay Systems (TDS 2003), Rocquencourt, France, (CD-ROM).
- Gałkowski, K., Rogers, E., Paszke, W. and Owens, D.H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13(1): 87-99. Zbl1046.93037
- Guiver, J.P. and Bose, N.K. (1981). On test for zero-sets of multivariate polynomials in noncompact polynomials, Proceedings of the IEEE 69(4): 467-469.
- Hespanha, J. (2004). Stochastic hybrid systems: Application to communication networks, Technical report, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA. Zbl1135.93375
- Johanson, K., Lygeros, J. and Sastry, S. (2004). Modelling hybrid systems, in H. Unbehauen (Ed.), Encyclopedia of Life Support Systems, EOLSS, Berlin.
- Kaczorek, T. (1998). Vectors and Matrices in Automatics and Electrotechnics, WNT, Warsaw, p. 70, (in Polish).
- Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London. Zbl1005.68175
- Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.
- Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(3): 273-277.
- Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 27(3): 613-623. Zbl1148.93318
- Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin. Zbl1221.93002
- Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems-Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.
- Keel, L.H. and Bhattacharyya, S.P. (2000). A generalization of Mikhailov's criterion with applications, Proceedings of the American Control Conference, Chicago, IL, USA, Vol. 6, pp. 4311-4315.
- Liberzon, D. (2003). Switching in Systems and Control, Birkhauser, Boston, MA. Zbl1036.93001
- Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38(7/8): 1079-1092. Zbl1325.93036
- Marchenko V.M. and Loiseau J.J. (2009). On the stability of hybrid difference-differential systems, Differential Equation 45(5), 743-756. Zbl1183.34013
- Rogers, E., Gałkowski, K. and Owens, D.H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, Vol. 349, Springer-Verlag, Berlin. Zbl1116.93005
- Xiao, Y. (2001). Stability test for 2-D continuous-discrete systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.