Some constructive applications of Λ 2 -representations to integration of PDEs

A. Popov; S. Zadadaev

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 261-274
  • ISSN: 0066-2216

Abstract

top
Two new applications of Λ 2 -representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane Λ 2 . 2. Employing Λ 2 -representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.

How to cite

top

Popov, A., and Zadadaev, S.. "Some constructive applications of $Λ^{2}$-representations to integration of PDEs." Annales Polonici Mathematici 74.1 (2000): 261-274. <http://eudml.org/doc/208370>.

@article{Popov2000,
abstract = {Two new applications of $Λ^\{2\}$-representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane $Λ^\{2\}$. 2. Employing $Λ^\{2\}$-representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.},
author = {Popov, A., Zadadaev, S.},
journal = {Annales Polonici Mathematici},
keywords = {discrete net; $Λ^\{2\}$-representations of PDEs; Lobachevsky (hyperbolic) geometry; pseudospherical metric; geometrical algorithms; inverse scattering method; sine-Gordon equation},
language = {eng},
number = {1},
pages = {261-274},
title = {Some constructive applications of $Λ^\{2\}$-representations to integration of PDEs},
url = {http://eudml.org/doc/208370},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Popov, A.
AU - Zadadaev, S.
TI - Some constructive applications of $Λ^{2}$-representations to integration of PDEs
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 261
EP - 274
AB - Two new applications of $Λ^{2}$-representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane $Λ^{2}$. 2. Employing $Λ^{2}$-representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.
LA - eng
KW - discrete net; $Λ^{2}$-representations of PDEs; Lobachevsky (hyperbolic) geometry; pseudospherical metric; geometrical algorithms; inverse scattering method; sine-Gordon equation
UR - http://eudml.org/doc/208370
ER -

References

top
  1. [1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. Zbl0472.35002
  2. [2] E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945. Zbl0211.12701
  3. [3] A. G. Popov, The non-Euclidean geometry and differential equations, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297-308. Zbl0851.35119
  4. [4] E. G. Poznyak and A. G. Popov, Lobachevsky geometry and the equations of mathematical physics, Russian Acad. Sci. Dokl. Math. 48 (1994), 338-342. Zbl0817.35098
  5. [5] E. G. Poznyak and A. G. Popov, Non-Euclidean geometry: Gauss formula and PDE's interpretation, Itogi Nauki i Tekhniki (VINITI), Geometry 2 (1994), 5-24 (in Russian). 
  6. [6] E. G. Poznyak and A. G. Popov, Geometry of the sine-Gordon equation, Itogi Nauki i Tekhniki (VINITI), Problems of Geometry, 23 (1991), 99-130 (in Russian). Zbl0741.35072
  7. [7] E. G. Poznyak and A. G. Popov, The Sine-Gordon Equation: Geometry and Physics, Znanie, Moscow, 1991 (in Russian). Zbl0790.53002
  8. [8] E. G. Poznyak and E. V. Shikin, Differential Geometry, Moscow Univ. Press, Moscow, 1990 (in Russian). 
  9. [9] A. A. Samarskĭ, Theory of Difference Schemes, Nauka, Moscow, 1977 (in Russian). 
  10. [10] R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), 343-357. 
  11. [11] A. S. Smogorzhevskiĭ, Geometric Constructions on the Lobachevsky Plane, Gostekhteorizdat, Moscow, 1951 (in Russian). 
  12. [12] L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory, Nauka, Moscow, 1986 (in Russian). Zbl0632.58003
  13. [13] S. A. Zadadaev, Λ 2 -representations of equations of mathematical physics and formulation of the spectral-evolutionary problem, Vestnik Moskov. Univ. Fiz. Astronom. 1998, no. 5, 29-32 (in Russian). 
  14. [14] V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation is a completely integrable Hamiltonian system, Funktsional. Anal. i Prilozhen. 5 (1971), no. 4, 18-127 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.