Integrable system of the heat kernel associated with logarithmic potentials
Annales Polonici Mathematici (2000)
- Volume: 74, Issue: 1, page 51-64
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Accardi, Vito Volterra and the development of functional analysis, in: Convegno Internazionale in memoria di Vito Volterra, Accademia Naz. dei Lincei, 1992, 151-181. Zbl0980.01016
- [2] K. Aomoto, Analytic structure of Schläfli function, Nagoya Math. J. 68 (1977), 1-16. Zbl0382.33010
- [3] K. Aomoto, Configurations and invariant Gauss-Manin connections of integrals I, II, Tokyo J. Math. 5 (1982), 249-287; 6 (1983), 1-24; Errata 22 (1999), 511-512. Zbl0524.32005
- [4] K. Aomoto, Formal integrable system attached to the statistical model of two dimensional vortices, in: Proc. Taniguchi Sympos. on Stochastic Differential Equations, 1985, 23-29.
- [5] K. Aomoto, On some properties of the Gauss-ensemble of random matrices (integrable system), Adv. Appl. Math. 38 (1987), 385-399.
- [6] K. Aomoto, Hypergeometric functions, The past, today, and ... (From the complex analytic point of view), Sugaku Expositions 9 (1996), 99-116.
- [7] T. Hida, Brownian Motion, Springer, 1980. Zbl0423.60063
- [8] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Chap. 5, North-Holland/Kodan-sha, 1981. Zbl0495.60005
- [9] K. Ito, Wiener integral and Feynman integral, in: Proc. 4th Berkeley Sympos., 1961, 227-238. Zbl0135.18803
- [10] M. Kac, Integration in Function Spaces and Some of Its Applications, Scuola Norm. Sup., Pisa, 1980. Zbl0504.28015
- [11] P. Lévy, Problèmes Concrets d'Analyse Fonctionnelle, Gauthier-Villars, Paris, 1951. Zbl0043.32302
- [12] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston, 1991.
- [13] J. Milnor, The Schläfli differential equality, in: Collected Papers I: Geometry, Publish or Perish, Houston, TX, 1994, 281-295.
- [14] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer, 1992.
- [15] L. Schläfli, On the multiple integral ∫∫...∫ whose limits are and , Quart. J. Math. 3 (1860), 54-68, 97-108.
- [16] S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab. 15 (1987), 1-39. Zbl0633.60077