# Killing tensors and warped product

Annales Polonici Mathematici (2000)

- Volume: 75, Issue: 1, page 15-33
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topJelonek, Włodzimierz. "Killing tensors and warped product." Annales Polonici Mathematici 75.1 (2000): 15-33. <http://eudml.org/doc/208380>.

@article{Jelonek2000,

abstract = {We present some examples of Killing tensors and give their geometric interpretation. We give new examples of non-compact complete and compact Riemannian manifolds whose Ricci tensor ϱ satisfies the condition $∇_\{X\} ϱ(X,X) = 2/(n+2) Xτg(X,X)$},

author = {Jelonek, Włodzimierz},

journal = {Annales Polonici Mathematici},

keywords = {Ricci tensor; Killing tensor; Einstein manifold; warped product},

language = {eng},

number = {1},

pages = {15-33},

title = {Killing tensors and warped product},

url = {http://eudml.org/doc/208380},

volume = {75},

year = {2000},

}

TY - JOUR

AU - Jelonek, Włodzimierz

TI - Killing tensors and warped product

JO - Annales Polonici Mathematici

PY - 2000

VL - 75

IS - 1

SP - 15

EP - 33

AB - We present some examples of Killing tensors and give their geometric interpretation. We give new examples of non-compact complete and compact Riemannian manifolds whose Ricci tensor ϱ satisfies the condition $∇_{X} ϱ(X,X) = 2/(n+2) Xτg(X,X)$

LA - eng

KW - Ricci tensor; Killing tensor; Einstein manifold; warped product

UR - http://eudml.org/doc/208380

ER -

## References

top- [B] A. Besse, Einstein Manifolds, Springer, Berlin, 1987
- [D] A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273-280 Zbl0453.53037
- [G] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. Zbl0378.53018
- [H] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), 209-215. Zbl0387.53014
- [J-1] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Polish Academy of Sciences, 1995.
- [J-2] W. Jelonek, Killing tensors and Einstein-Weyl geometry, Colloq. Math. 81 (1999), 5-19. Zbl0945.53028
- [K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963. Zbl0119.37502
- [M-P-P-S] B. Madsen, H. Pedersen, Y. Poon and A. Swaan, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), 407-434. Zbl0881.53041
- [N] S. Nölker, Isometric immersions of warped products, Differential Geom. Appl. 6 (1996), 1-30. Zbl0881.53052
- [O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.