Killing tensors and Einstein-Weyl geometry
Colloquium Mathematicae (1999)
- Volume: 81, Issue: 1, page 5-19
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topJelonek, Włodzimierz. "Killing tensors and Einstein-Weyl geometry." Colloquium Mathematicae 81.1 (1999): 5-19. <http://eudml.org/doc/210730>.
@article{Jelonek1999,
abstract = {We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.},
author = {Jelonek, Włodzimierz},
journal = {Colloquium Mathematicae},
keywords = {Einstein-Weyl manifold; Killing tensor; Ricci tensor},
language = {eng},
number = {1},
pages = {5-19},
title = {Killing tensors and Einstein-Weyl geometry},
url = {http://eudml.org/doc/210730},
volume = {81},
year = {1999},
}
TY - JOUR
AU - Jelonek, Włodzimierz
TI - Killing tensors and Einstein-Weyl geometry
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 5
EP - 19
AB - We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.
LA - eng
KW - Einstein-Weyl manifold; Killing tensor; Ricci tensor
UR - http://eudml.org/doc/210730
ER -
References
top- [1] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.
- [2] A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273-280. Zbl0453.53037
- [3] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type , J. Reine Angew. Math. 469 (1995), 1-50.
- [4] P. Gauduchon, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 563-629. Zbl0763.53034
- [5] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518. Zbl0523.53059
- [6] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. Zbl0378.53018
- [7] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Inst. Math., Polish Acad. Sci., 1995.
- [8] B. Madsen, H. Pedersen, Y. Poon and A. Swann, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), 407-434. Zbl0881.53041
- [10] H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99-113. Zbl0776.53027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.