Killing tensors and Einstein-Weyl geometry

Włodzimierz Jelonek

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 1, page 5-19
  • ISSN: 0010-1354

Abstract

top
We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.

How to cite

top

Jelonek, Włodzimierz. "Killing tensors and Einstein-Weyl geometry." Colloquium Mathematicae 81.1 (1999): 5-19. <http://eudml.org/doc/210730>.

@article{Jelonek1999,
abstract = {We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.},
author = {Jelonek, Włodzimierz},
journal = {Colloquium Mathematicae},
keywords = {Einstein-Weyl manifold; Killing tensor; Ricci tensor},
language = {eng},
number = {1},
pages = {5-19},
title = {Killing tensors and Einstein-Weyl geometry},
url = {http://eudml.org/doc/210730},
volume = {81},
year = {1999},
}

TY - JOUR
AU - Jelonek, Włodzimierz
TI - Killing tensors and Einstein-Weyl geometry
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 5
EP - 19
AB - We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.
LA - eng
KW - Einstein-Weyl manifold; Killing tensor; Ricci tensor
UR - http://eudml.org/doc/210730
ER -

References

top
  1. [1] A. Besse, Einstein Manifolds, Springer, Berlin, 1987. 
  2. [2] A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273-280. Zbl0453.53037
  3. [3] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S 1 × S 3 , J. Reine Angew. Math. 469 (1995), 1-50. 
  4. [4] P. Gauduchon, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 563-629. Zbl0763.53034
  5. [5] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518. Zbl0523.53059
  6. [6] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. Zbl0378.53018
  7. [7] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Inst. Math., Polish Acad. Sci., 1995. 
  8. [8] B. Madsen, H. Pedersen, Y. Poon and A. Swann, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), 407-434. Zbl0881.53041
  9.  
  10. [10] H. Pedersen and A. Swann, Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99-113. Zbl0776.53027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.