Invariant measures for iterated function systems
Annales Polonici Mathematici (2000)
- Volume: 75, Issue: 1, page 87-98
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Arbeiter M. and Patzschke N., Random self-similar multifractals, Math. Nachr. 181 (1996), 5-42. Zbl0873.28003
- [2] Dudley R. M., Probabilities and Matrices, Aarhus Universitet, 1976. Zbl0355.60004
- [3] Falconer K. J., Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.
- [4] Falconer K. J. , The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985. Zbl0587.28004
- [5] R. Fortet et Mourier B., Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. Zbl0053.09601
- [6] Geronimo J. S. and Hardin D. P., An exact formula for the measure dimensions associated with a class of piecewise linear maps, Constr. Approx. 5 (1989), 89-98. Zbl0666.28004
- [7] Hata M., On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381-414. Zbl0608.28003
- [8] Hutchinson J. E., Fractals and self-similarities, Indiana Univ. Math. J. 30 (1981), 713-747. Zbl0598.28011
- [9] Lasota A. and Myjak J., Generic properties of fractal measures, Bull. Polish Acad. Sci. Math. 42 (1994), 283-296. Zbl0851.28004
- [10] Lasota A. and Myjak J., Semifractals on Polish spaces, ibid. 46 (1998), 179-196. Zbl0921.28007
- [11] Lasota A. and Yorke J. A., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. Zbl0804.47033
- [12] Szarek T., Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257. Zbl0903.60052