Page 1 Next

Displaying 1 – 20 of 193

Showing per page

A central limit theorem for two-dimensional random walks in a cone

Rodolphe Garbit (2011)

Bulletin de la Société Mathématique de France

We prove that a planar random walk with bounded increments and mean zero which is conditioned to stay in a cone converges weakly to the corresponding Brownian meander if and only if the tail distribution of the exit time from the cone is regularly varying. This condition is satisfied in many natural examples.

A criterion of asymptotic stability for Markov-Feller e-chains on Polish spaces

Dawid Czapla (2012)

Annales Polonici Mathematici

Stettner [Bull. Polish Acad. Sci. Math. 42 (1994)] considered the asymptotic stability of Markov-Feller chains, provided the sequence of transition probabilities of the chain converges to an invariant probability measure in the weak sense and converges uniformly with respect to the initial state variable on compact sets. We extend those results to the setting of Polish spaces and relax the original assumptions. Finally, we present a class of Markov-Feller chains with a linear state space model which...

A Gauss-Kuzmin theorem for the Rosen fractions

Gabriela I. Sebe (2002)

Journal de théorie des nombres de Bordeaux

Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.

A generalization of Ueno's inequality for n-step transition probabilities

Andrzej Nowak (1998)

Applicationes Mathematicae

We provide a generalization of Ueno's inequality for n-step transition probabilities of Markov chains in a general state space. Our result is relevant to the study of adaptive control problems and approximation problems in the theory of discrete-time Markov decision processes and stochastic games.

A note on the characterization ofsome minification processes

Wiesław Dziubdziela (1997)

Applicationes Mathematicae

We present a stochastic model which yields a stationary Markov process whose invariant distribution is maximum stable with respect to the geometrically distributed sample size. In particular, we obtain the autoregressive Pareto processes and the autoregressive logistic processes introduced earlier by Yeh et al

A quenched weak invariance principle

Jérôme Dedecker, Florence Merlevède, Magda Peligrad (2014)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we study the almost sure conditional central limit theorem in its functional form for a class of random variables satisfying a projective criterion. Applications to strongly mixing processes and nonirreducible Markov chains are given. The proofs are based on the normal approximation of double indexed martingale-like sequences, an approach which has interest in itself.

Adaptive control for discrete-time Markov processes with unbounded costs: Discounted criterion

Evgueni I. Gordienko, J. Adolfo Minjárez-Sosa (1998)

Kybernetika

We study the adaptive control problem for discrete-time Markov control processes with Borel state and action spaces and possibly unbounded one-stage costs. The processes are given by recurrent equations x t + 1 = F ( x t , a t , ξ t ) , t = 0 , 1 , ... with i.i.d. k -valued random vectors ξ t whose density ρ is unknown. Assuming observability of ξ t we propose the procedure of statistical estimation of ρ that allows us to prove discounted asymptotic optimality of two types of adaptive policies used early for the processes with bounded costs.

Currently displaying 1 – 20 of 193

Page 1 Next