Newton numbers and residual measures of plurisubharmonic functions
Annales Polonici Mathematici (2000)
- Volume: 75, Issue: 3, page 213-231
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topRashkovskii, Alexander. "Newton numbers and residual measures of plurisubharmonic functions." Annales Polonici Mathematici 75.3 (2000): 213-231. <http://eudml.org/doc/208396>.
@article{Rashkovskii2000,
abstract = {We study the masses charged by $(dd^cu)^n$ at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.},
author = {Rashkovskii, Alexander},
journal = {Annales Polonici Mathematici},
keywords = {Monge-Ampère operator; local indicator; directional Lelong number; plurisubharmonic function; Newton polyhedron},
language = {eng},
number = {3},
pages = {213-231},
title = {Newton numbers and residual measures of plurisubharmonic functions},
url = {http://eudml.org/doc/208396},
volume = {75},
year = {2000},
}
TY - JOUR
AU - Rashkovskii, Alexander
TI - Newton numbers and residual measures of plurisubharmonic functions
JO - Annales Polonici Mathematici
PY - 2000
VL - 75
IS - 3
SP - 213
EP - 231
AB - We study the masses charged by $(dd^cu)^n$ at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.
LA - eng
KW - Monge-Ampère operator; local indicator; directional Lelong number; plurisubharmonic function; Newton polyhedron
UR - http://eudml.org/doc/208396
ER -
References
top- [1] L. A. Aĭzenberg and Yu. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Nauka, Novosibirsk, 1979 (in Russian); English transl.: AMS, Providence, RI, 1983.
- [2] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, V. Ancona and A. Silva (eds.), Plenum Press, New York, 1993, 115-193. Zbl0792.32006
- [3] L. Hörmander, Notions of Convexity, Progr. Math. 127, Birkhäuser, 1994.
- [4] C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), 295-304. Zbl0416.32007
- [5] C. O. Kiselman, Un nombre de Lelong raffiné, in: Séminaire d'Analyse Complexe et Géométrie 1985-87, Fac. Sci. Monastir, 1987, 61-70.
- [6] C. O. Kiselman, Tangents of plurisubharmonic functions, in: International Symposium in Memory of Hua Loo Keng, Vol. II, Science Press and Springer, 1991, 157-167. Zbl0810.31006
- [7] C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173-197. Zbl0827.32016
- [8] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
- [9] A. G. Kouchnirenko, Newton polyhedron and the number of solutions of a system of k equations with k indeterminates, Uspekhi Mat. Nauk 30 (1975), no. 2, 266-267 (in Russian).
- [10] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
- [11] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983. Zbl0528.14013
- [12] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York, and Dunod, Paris, 1969. Zbl0195.11604
- [13] P. Lelong, Remarks on pointwise multiplicities, Linear Topol. Spaces Complex Anal. 3 (1997), 112-119. Zbl0923.32003
- [14] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer, Berlin, 1986. Zbl0583.32001
- [15] P. Lelong and A. Rashkovskii, Local indicators for plurisubharmonic functions, J. Math. Pures Appl. 78 (1999), 233-247. Zbl0933.32049
- [16] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345-364. Zbl0367.35025
- [17] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457-467. Zbl0849.31010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.