Page 1

Displaying 1 – 10 of 10

Showing per page

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact section.

Brolin's theorem for curves in two complex dimensions

Charles Favre, Mattias Jonsson (2003)

Annales de l’institut Fourier

Given a holomorphic mapping f : 2 2 of degree d 2 we give sufficient conditions on a positive closed (1,1) current of S of unit mass under which d - n f n * S converges to the Green current as n . We also conjecture necessary condition for the same convergence.

Extreme plurisubharmonic singularities

Alexander Rashkovskii (2012)

Annales Polonici Mathematici

A plurisubharmonic singularity is extreme if it cannot be represented as the sum of non-homothetic singularities. A complete characterization of such singularities is given for the case of homogeneous singularities (in particular, those determined by generic holomorphic mappings) in terms of decomposability of certain convex sets in ℝⁿ. Another class of extreme singularities is presented by means of a notion of relative type.

Green functions, Segre numbers, and King’s formula

Mats Andersson, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

Let 𝒥 be a coherent ideal sheaf on a complex manifold X with zero set Z , and let G be a plurisubharmonic function such that G = log | f | + 𝒪 ( 1 ) locally at Z , where f is a tuple of holomorphic functions that defines 𝒥 . We give a meaning to the Monge-Ampère products ( d d c G ) k for k = 0 , 1 , 2 , ... , and prove that the Lelong numbers of the currents M k 𝒥 : = 1 Z ( d d c G ) k at x coincide with the so-called Segre numbers of J at x , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that M k 𝒥 satisfy a certain generalization...

Lelong numbers on projective varieties

Rodrigo Parra (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Given a positive closed (1,1)-current T defined on the regular locus of a projective variety X with bounded mass near the singular part of X and Y an irreducible algebraic subset of X , we present uniform estimates for the locus inside Y where the Lelong numbers of T are larger than the generic Lelong number of T along Y .

Matrix inequalities and the complex Monge-Ampère operator

Jonas Wiklund (2004)

Annales Polonici Mathematici

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.

Newton numbers and residual measures of plurisubharmonic functions

Alexander Rashkovskii (2000)

Annales Polonici Mathematici

We study the masses charged by ( d d c u ) n at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.

Currently displaying 1 – 10 of 10

Page 1