Vector fields, residues and cohomology

James Carrell

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 51-59
  • ISSN: 0137-6934

How to cite


Carrell, James. "Vector fields, residues and cohomology." Banach Center Publications 36.1 (1996): 51-59. <>.

author = {Carrell, James},
journal = {Banach Center Publications},
keywords = {residues; compact complex manifolds},
language = {eng},
number = {1},
pages = {51-59},
title = {Vector fields, residues and cohomology},
url = {},
volume = {36},
year = {1996},

AU - Carrell, James
TI - Vector fields, residues and cohomology
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 51
EP - 59
LA - eng
KW - residues; compact complex manifolds
UR -
ER -


  1. [AA] E. Akyildiz and Y. Akyildiz, The relations of Plücker coordinates to Schubert calculus, J. Differential Geom. 29 (1989), 135-142. Zbl0692.14031
  2. [AC1] E. Akyildiz and J. B. Carrell, Cohomology of projective varieties with regular S L 2 actions, Manuscripta Math. 58 (1987), 473-486. Zbl0626.14017
  3. [AC2] E. Akyildiz and J. B. Carrell, A generalization of the Kostant-Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3934-3937. Zbl0709.14024
  4. [ACLS] E. Akyildiz, J. B. Carrell, D. I. Lieberman and A. J. Sommese, On the graded rings associated to holomorphic vector fields with exactly one zero, Proc. Sympos. Pure Math. 40 (1983), 55-57. Zbl0523.57031
  5. [ALP] E. Akyildiz, A. Lascoux and P. Pragacz, Cohomology of Schubert subvarieties of G L n / P , J. Differential Geom. 35 (1992), 511-519. 
  6. [At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207. Zbl0078.16002
  7. [Be] A. Beauville, Une notion de résidu en géométrie analytique, in: Séminaire Pierre Lelong (Analyse). Année 1970. Lecture Notes in Math. 205, Springer-Verlag, Berlin and New York, 1971, 183-203. 
  8. [BB] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497. Zbl0275.14007
  9. [B1] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 40 (1967), 231-244. Zbl0145.43801
  10. [B2] R. Bott, A residue formula for holomorphic vector fields, J. Differential Geom. 1 (1967), 311-330. Zbl0179.28801
  11. [B3] R. Bott, On a topological obstruction to integrability, Proc. Sympos. Pure Math. 16 (1970), 127-132. 
  12. [C1] J. B. Carrell, A remark on the Grothendieck residue map, Proc. Amer. Math. Soc. 70 (1978), 43-48. 
  13. [C2] J. B. Carrell, Orbits of the Weyl group and a theorem of DeConcini and Procesi, Compositio Math. 60 (1986), 45-52. 
  14. [C3] J. B. Carrell, Vector fields, flag varieties and Schubert calculus, in: Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj-Prakashan, Madras, 1991, 23-59. 
  15. [C4] J. B. Carrell, Bruhat cells in the nilpotent variety and the intersection rings of Schubert varieties, J. Differential Geom. 37 (1993), 651-668. Zbl0807.14041
  16. [C5] J. B. Carrell, Deformation of the nilpotent zero scheme and the intersection ring of invariant subvarieties, to appear in J. Reine Angew. Math. 
  17. [CL1] J. B. Carrell, and D. I. Lieberman, Holomorphic vector fields and compact Kaehler manifolds, Invent. Math. 21 (1973), 303-309. Zbl0253.32017
  18. [CL2] J. B. Carrell and D. I. Lieberman, Vector fields and Chern numbers, Math. Ann. 225 (1977), 263-272. 
  19. [DS] C. DeConcini and T. A. Springer, Betti numbers of complete symmetric varieties, Geometry Today, Birkhäuser (1985). 
  20. [H] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin and New York, 1966. Zbl0212.26101
  21. [L] J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117 (1984). Zbl0562.14003
  22. [V] J. L. Verdier, Base change for twisted inverse image of coherent sheaves, in: Algebraic Geometry, Oxford University Press, London, 1969, 393-408. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.