Vector fields, residues and cohomology
Banach Center Publications (1996)
- Volume: 36, Issue: 1, page 51-59
- ISSN: 0137-6934
Access Full Article
topHow to cite
topCarrell, James. "Vector fields, residues and cohomology." Banach Center Publications 36.1 (1996): 51-59. <http://eudml.org/doc/208582>.
@article{Carrell1996,
author = {Carrell, James},
journal = {Banach Center Publications},
keywords = {residues; compact complex manifolds},
language = {eng},
number = {1},
pages = {51-59},
title = {Vector fields, residues and cohomology},
url = {http://eudml.org/doc/208582},
volume = {36},
year = {1996},
}
TY - JOUR
AU - Carrell, James
TI - Vector fields, residues and cohomology
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 51
EP - 59
LA - eng
KW - residues; compact complex manifolds
UR - http://eudml.org/doc/208582
ER -
References
top- [AA] E. Akyildiz and Y. Akyildiz, The relations of Plücker coordinates to Schubert calculus, J. Differential Geom. 29 (1989), 135-142. Zbl0692.14031
- [AC1] E. Akyildiz and J. B. Carrell, Cohomology of projective varieties with regular actions, Manuscripta Math. 58 (1987), 473-486. Zbl0626.14017
- [AC2] E. Akyildiz and J. B. Carrell, A generalization of the Kostant-Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3934-3937. Zbl0709.14024
- [ACLS] E. Akyildiz, J. B. Carrell, D. I. Lieberman and A. J. Sommese, On the graded rings associated to holomorphic vector fields with exactly one zero, Proc. Sympos. Pure Math. 40 (1983), 55-57. Zbl0523.57031
- [ALP] E. Akyildiz, A. Lascoux and P. Pragacz, Cohomology of Schubert subvarieties of , J. Differential Geom. 35 (1992), 511-519.
- [At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207. Zbl0078.16002
- [Be] A. Beauville, Une notion de résidu en géométrie analytique, in: Séminaire Pierre Lelong (Analyse). Année 1970. Lecture Notes in Math. 205, Springer-Verlag, Berlin and New York, 1971, 183-203.
- [BB] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497. Zbl0275.14007
- [B1] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 40 (1967), 231-244. Zbl0145.43801
- [B2] R. Bott, A residue formula for holomorphic vector fields, J. Differential Geom. 1 (1967), 311-330. Zbl0179.28801
- [B3] R. Bott, On a topological obstruction to integrability, Proc. Sympos. Pure Math. 16 (1970), 127-132.
- [C1] J. B. Carrell, A remark on the Grothendieck residue map, Proc. Amer. Math. Soc. 70 (1978), 43-48.
- [C2] J. B. Carrell, Orbits of the Weyl group and a theorem of DeConcini and Procesi, Compositio Math. 60 (1986), 45-52.
- [C3] J. B. Carrell, Vector fields, flag varieties and Schubert calculus, in: Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj-Prakashan, Madras, 1991, 23-59.
- [C4] J. B. Carrell, Bruhat cells in the nilpotent variety and the intersection rings of Schubert varieties, J. Differential Geom. 37 (1993), 651-668. Zbl0807.14041
- [C5] J. B. Carrell, Deformation of the nilpotent zero scheme and the intersection ring of invariant subvarieties, to appear in J. Reine Angew. Math.
- [CL1] J. B. Carrell, and D. I. Lieberman, Holomorphic vector fields and compact Kaehler manifolds, Invent. Math. 21 (1973), 303-309. Zbl0253.32017
- [CL2] J. B. Carrell and D. I. Lieberman, Vector fields and Chern numbers, Math. Ann. 225 (1977), 263-272.
- [DS] C. DeConcini and T. A. Springer, Betti numbers of complete symmetric varieties, Geometry Today, Birkhäuser (1985).
- [H] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin and New York, 1966. Zbl0212.26101
- [L] J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117 (1984). Zbl0562.14003
- [V] J. L. Verdier, Base change for twisted inverse image of coherent sheaves, in: Algebraic Geometry, Oxford University Press, London, 1969, 393-408.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.