Orbits of the Weyl group and a theorem of DeConcini and Procesi
Compositio Mathematica (1986)
- Volume: 60, Issue: 1, page 45-52
- ISSN: 0010-437X
Access Full Article
topHow to cite
topCarrell, James B.. "Orbits of the Weyl group and a theorem of DeConcini and Procesi." Compositio Mathematica 60.1 (1986): 45-52. <http://eudml.org/doc/89796>.
@article{Carrell1986,
author = {Carrell, James B.},
journal = {Compositio Mathematica},
keywords = {conjugacy classes of nilpotent matrices; semi-simple algebraic group; Borel subgroup; maximal torus; regular functions; Weyl group; graded ring; Levi subalgebra; variety of Borel subalgebras; flag variety},
language = {eng},
number = {1},
pages = {45-52},
publisher = {Martinus Nijhoff Publishers},
title = {Orbits of the Weyl group and a theorem of DeConcini and Procesi},
url = {http://eudml.org/doc/89796},
volume = {60},
year = {1986},
}
TY - JOUR
AU - Carrell, James B.
TI - Orbits of the Weyl group and a theorem of DeConcini and Procesi
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 45
EP - 52
LA - eng
KW - conjugacy classes of nilpotent matrices; semi-simple algebraic group; Borel subgroup; maximal torus; regular functions; Weyl group; graded ring; Levi subalgebra; variety of Borel subalgebras; flag variety
UR - http://eudml.org/doc/89796
ER -
References
top- [ACL] E. Akyildiz, J.B. Carrell and D.I. Lieberman: Zeros of holomorphic vector fields on singular varieties and intersection rings of Schubert varieties. Compositio Math.57 (1986) 237-248. Zbl0613.14035MR827353
- [BK] W. Borho and H. Kraft: Über Bahnen und deren Deformation bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helvetici54 (1979) 62-104. Zbl0395.14013MR522032
- [BS] W.M. Beynon and N. Spaltenstein: Green functions of finite Chevalley groups of type E ( n = 6, 7, 8), preprint. Zbl0539.20025
- [C] J.B. Carrell: Vector fields and the cohomology of G/B, Mainfolds and Lie groups. Papers in honor of Y. Matsushima. Progress in Mathematics, Vol. 14Birkhauser, Boston (1981). Zbl0482.57017MR642851
- [C-L1] J.B. Carrell and D.I. Lieberman: Holomorphic vector fields and compact Kaehler manifolds. Invent. Math.21 (1973) 303-309. Zbl0253.32017MR326010
- [C-L] J.B. Carrell and D.I. Lieberman: Vector fields and Chern numbers. Math. A nn .225 (1977) 263-273. Zbl0365.32020MR435456
- [CS] J.B. Carrell and A.J. Sommese: Some topological aspects of C *-actions on compact Kaehler manifolds. Comment. Math. Helv.54 (1979) 567-587. Zbl0466.32015MR552677
- [DP] C. Deconcini and C. Procesi: Symmetric functions, conjugacy classes, and the flag variety. Invent. Math., 64 (1981) 203-219. Zbl0475.14041MR629470
- [Hu] J. Humphreys: Linear algebraic groups. Springer Verlag, Berlin and New York (1975). Zbl0325.20039MR396773
- [Ko] B. Kostant: Lie group representations on polynomial rings. A mer. J. Math.85 (1963) 327-404. Zbl0124.26802MR158024
- [Kr] H. Kraft: Conjugacy classes and Weyl group representations; Tableaux de Young et foncteurs de Schur en algebre et geometrie (Conference international, Torun Pologne 1980). Asterisque87-88 (1981) 195-205. Zbl0489.17002MR646820
- [KP] H. Kraft and C. Procesi: Closures of conjugacy classes of matrices are normal. Invent. Math.53 (1979) 227-247. Zbl0434.14026MR549399
- [Sp] N. Spaltenstein: The fixed point set of a unipotent transformation on the flag manifold. Nederl. Akad. Wetensch. Proc. Ser. A.79 (1976) 452-456. Zbl0343.20029MR485901
- [Spr] T.A. Springer: A construction of representations of Weyl groups. Invent. Math.44 (1978) 279-293. Zbl0376.17002MR491988
- [Ta] T. Tanisaki: Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups. Tohuku Math. J.34 (1982) 575-585. Zbl0544.14030MR685425
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.