Orbits of the Weyl group and a theorem of DeConcini and Procesi

James B. Carrell

Compositio Mathematica (1986)

  • Volume: 60, Issue: 1, page 45-52
  • ISSN: 0010-437X

How to cite

top

Carrell, James B.. "Orbits of the Weyl group and a theorem of DeConcini and Procesi." Compositio Mathematica 60.1 (1986): 45-52. <http://eudml.org/doc/89796>.

@article{Carrell1986,
author = {Carrell, James B.},
journal = {Compositio Mathematica},
keywords = {conjugacy classes of nilpotent matrices; semi-simple algebraic group; Borel subgroup; maximal torus; regular functions; Weyl group; graded ring; Levi subalgebra; variety of Borel subalgebras; flag variety},
language = {eng},
number = {1},
pages = {45-52},
publisher = {Martinus Nijhoff Publishers},
title = {Orbits of the Weyl group and a theorem of DeConcini and Procesi},
url = {http://eudml.org/doc/89796},
volume = {60},
year = {1986},
}

TY - JOUR
AU - Carrell, James B.
TI - Orbits of the Weyl group and a theorem of DeConcini and Procesi
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 45
EP - 52
LA - eng
KW - conjugacy classes of nilpotent matrices; semi-simple algebraic group; Borel subgroup; maximal torus; regular functions; Weyl group; graded ring; Levi subalgebra; variety of Borel subalgebras; flag variety
UR - http://eudml.org/doc/89796
ER -

References

top
  1. [ACL] E. Akyildiz, J.B. Carrell and D.I. Lieberman: Zeros of holomorphic vector fields on singular varieties and intersection rings of Schubert varieties. Compositio Math.57 (1986) 237-248. Zbl0613.14035MR827353
  2. [BK] W. Borho and H. Kraft: Über Bahnen und deren Deformation bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helvetici54 (1979) 62-104. Zbl0395.14013MR522032
  3. [BS] W.M. Beynon and N. Spaltenstein: Green functions of finite Chevalley groups of type E ( n = 6, 7, 8), preprint. Zbl0539.20025
  4. [C] J.B. Carrell: Vector fields and the cohomology of G/B, Mainfolds and Lie groups. Papers in honor of Y. Matsushima. Progress in Mathematics, Vol. 14Birkhauser, Boston (1981). Zbl0482.57017MR642851
  5. [C-L1] J.B. Carrell and D.I. Lieberman: Holomorphic vector fields and compact Kaehler manifolds. Invent. Math.21 (1973) 303-309. Zbl0253.32017MR326010
  6. [C-L] J.B. Carrell and D.I. Lieberman: Vector fields and Chern numbers. Math. A nn .225 (1977) 263-273. Zbl0365.32020MR435456
  7. [CS] J.B. Carrell and A.J. Sommese: Some topological aspects of C *-actions on compact Kaehler manifolds. Comment. Math. Helv.54 (1979) 567-587. Zbl0466.32015MR552677
  8. [DP] C. Deconcini and C. Procesi: Symmetric functions, conjugacy classes, and the flag variety. Invent. Math., 64 (1981) 203-219. Zbl0475.14041MR629470
  9. [Hu] J. Humphreys: Linear algebraic groups. Springer Verlag, Berlin and New York (1975). Zbl0325.20039MR396773
  10. [Ko] B. Kostant: Lie group representations on polynomial rings. A mer. J. Math.85 (1963) 327-404. Zbl0124.26802MR158024
  11. [Kr] H. Kraft: Conjugacy classes and Weyl group representations; Tableaux de Young et foncteurs de Schur en algebre et geometrie (Conference international, Torun Pologne 1980). Asterisque87-88 (1981) 195-205. Zbl0489.17002MR646820
  12. [KP] H. Kraft and C. Procesi: Closures of conjugacy classes of matrices are normal. Invent. Math.53 (1979) 227-247. Zbl0434.14026MR549399
  13. [Sp] N. Spaltenstein: The fixed point set of a unipotent transformation on the flag manifold. Nederl. Akad. Wetensch. Proc. Ser. A.79 (1976) 452-456. Zbl0343.20029MR485901
  14. [Spr] T.A. Springer: A construction of representations of Weyl groups. Invent. Math.44 (1978) 279-293. Zbl0376.17002MR491988
  15. [Ta] T. Tanisaki: Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups. Tohuku Math. J.34 (1982) 575-585. Zbl0544.14030MR685425

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.