Intersection-theoretical computations on v e r l i n e M g

Carel Faber

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 71-81
  • ISSN: 0137-6934

Abstract

top
In this paper we explore several concrete problems, all more or less related to the intersection theory of the moduli space of (stable) curves, introduced by Mumford [Mu 1].

How to cite

top

Faber, Carel. "Intersection-theoretical computations on ${verline M}_{g}$." Banach Center Publications 36.1 (1996): 71-81. <http://eudml.org/doc/208584>.

@article{Faber1996,
abstract = {In this paper we explore several concrete problems, all more or less related to the intersection theory of the moduli space of (stable) curves, introduced by Mumford [Mu 1].},
author = {Faber, Carel},
journal = {Banach Center Publications},
keywords = {intersection theory of the moduli space of curves; ample divisors; curves of low genus; Chow ring; Witten conjecture; Schottky locus},
language = {eng},
number = {1},
pages = {71-81},
title = {Intersection-theoretical computations on $\{verline M\}_\{g\}$},
url = {http://eudml.org/doc/208584},
volume = {36},
year = {1996},
}

TY - JOUR
AU - Faber, Carel
TI - Intersection-theoretical computations on ${verline M}_{g}$
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 71
EP - 81
AB - In this paper we explore several concrete problems, all more or less related to the intersection theory of the moduli space of (stable) curves, introduced by Mumford [Mu 1].
LA - eng
KW - intersection theory of the moduli space of curves; ample divisors; curves of low genus; Chow ring; Witten conjecture; Schottky locus
UR - http://eudml.org/doc/208584
ER -

References

top
  1. [A-C] E. Arbarello and M. Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171. Zbl0625.14014
  2. [BCOV] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes, Comm. Math. Phys. 165 (1994), 311-428. Zbl0815.53082
  3. [C-H] M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Scient. École Norm. Sup. (4) 21 (1988), 455-475. Zbl0674.14006
  4. [Fa 1] C. Faber, Chow rings of moduli spaces of curves I: The Chow ring of ο v e r l i n e M 3 , Ann. of Math. 132 (1990), 331-419. Zbl0721.14013
  5. [Fa 2] C. Faber, Chow rings of moduli spaces of curves II: Some results on the Chow ring of ο v e r l i n e M 4 , Ann. of Math. 132 (1990), 421-449. Zbl0735.14021
  6. [Fa 3] C. Faber, Some results on the codimension-two Chow group of the moduli space of curves, in: Algebraic Curves and Projective Geometry (eds. E. Ballico and C. Ciliberto), Lecture Notes in Math. 1389, Springer, Berlin, 1988, 66-75. 
  7. [Ha] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math. 156, Springer, Berlin, 1970. Zbl0208.48901
  8. [Hi 1] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, in: Symposium Internacional de Topologí a Algebraica (México 1956), Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, 129-144; or: Gesammelte Abhandlungen, Band I, Springer, Berlin, 1987, 345-360. 
  9. [Hi 2] F. Hirzebruch, Characteristic numbers of homogeneous domains, in: Seminars on analytic functions, vol. II, IAS, Princeton 1957, 92-104; or: Gesammelte Abhandlungen, Band I, Springer, Berlin, 1987, 361-366. 
  10. [Ko] M. Kontsevich, Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function, Comm. Math. Phys. 147 (1992), 1-23. Zbl0756.35081
  11. [Liu] Qing Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295 (1993), 201-222. 
  12. [Mu 1] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arithmetic and Geometry II (eds. M. Artin and J. Tate), Progr. Math. 36 (1983), Birkhäuser, 271-328. Zbl0554.14008
  13. [Mu 2] D. Mumford, On the Kodaira Dimension of the Siegel Modular Variety, in: Algebraic Geometry-Open Problems (eds. C. Ciliberto, F. Ghione and F. Orecchia), Lecture Notes in Math. 997, Springer, Berlin, 1983, 348-375. 
  14. [Wi] E. Witten, Two dimensional gravity and intersection theory on moduli space, in: Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243-310. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.