Invariante Divisoren und Schnitthomologie von torischen Varietäten

Gottfried Barthel; Jean-Paul Brasselet; Karl-Heinz Fieseler; Ludger Kaup

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 9-23
  • ISSN: 0137-6934


In this article, we complete the interpretation of groups of classes of invariant divisors on a complex toric variety X of dimension n in terms of suitable (co-) homology groups. In [BBFK], we proved the following result (see Satz 1 below): Let C l D i v C ( X ) and C l D i v W ( X ) denote the groups of classes of invariant Cartier resp. Weil divisors on X. If X is non degenerate (i.e., not equivariantly isomorphic to the product of a toric variety and a torus of positive dimension), then the natural homomorphisms C l D i v C ( X ) H 2 ( X ) and C l D i v W ( X ) H 2 n - 2 c l d ( X ) are isomorphisms, the inclusion C l D i v C ( X ) C l D i v W ( X ) corresponds to the Poincaré duality homomorphism P 2 n - 2 , and we have H 2 n - 1 c l d ( X ) H 1 ( X ) = 0 . For the convenience of the reader, the proof is sketched below; it supersedes the proof for the compact case given in the report [BF]. Using suitable Künneth formulæ, that yields results valid in the degenerate case. In the present article, we use the sheaf-theoretic description of the intersection homology groups I p H c l d ( X ) , for a perversity p, to prove that there is an open invariant subset V p of X and a natural isomorphism I p H 2 n - j c l d ( X ) H j ( V p ) for j 2 . In the non degenerate case, we thus obtain an identification of I p H 2 n - 2 c l d ( X ) with C l D i v p ( X ) , the group of invariant Weil divisors on X that are Cartier divisors on V p , and the vanishing result I p H 2 n - 1 c l d ( X ) = 0 (see Satz 2). That divisor class group admits an explicit description in terms of the fan defining the toric variety. We use these results to treat problems of invariance of the intersection homology Betti number I p b 2 n - 2 c l d . Moreover, we discuss the question when the homology Chern class c n - 1 ( X ) lies in the subgroup I p H 2 n - 2 c l d ( X ) of H 2 n - 2 c l d ( X ) .

How to cite


Barthel, Gottfried, et al. "Invariante Divisoren und Schnitthomologie von torischen Varietäten." Banach Center Publications 36.1 (1996): 9-23. <>.

author = {Barthel, Gottfried, Brasselet, Jean-Paul, Fieseler, Karl-Heinz, Kaup, Ludger},
journal = {Banach Center Publications},
keywords = {toric variety; intersection homology; perservity; divisor class group; fan},
language = {ger},
number = {1},
pages = {9-23},
title = {Invariante Divisoren und Schnitthomologie von torischen Varietäten},
url = {},
volume = {36},
year = {1996},

AU - Barthel, Gottfried
AU - Brasselet, Jean-Paul
AU - Fieseler, Karl-Heinz
AU - Kaup, Ludger
TI - Invariante Divisoren und Schnitthomologie von torischen Varietäten
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 9
EP - 23
LA - ger
KW - toric variety; intersection homology; perservity; divisor class group; fan
UR -
ER -


  1. [BBF] G. Barthel, J.-P. Brasselet und K.-H. Fieseler: Classes de Chern des variétés toriques singulières, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 187-192. 
  2. [BBFGK] G. Barthel, J.-P. Brasselet, K.-H. Fieseler, O. Gabber und L. Kaup: Sur le relèvement des cycles algébriques en homologie d'intersection, Ann. of Math. (2) 141 (1995), 147-179. Zbl0827.14012
  3. [BBFK] G. Barthel, J.-P. Brasselet, K.-H. Fieseler und L. Kaup: Diviseurs invariants et homologie de variétés toriques, erscheint in Tôhoku Math. J. (2), vorauss. 1996. 
  4. [BF] G. Barthel und K.-H. Fieseler: Invariant Divisors and Homology of Compact Complex Toric Varieties, erscheint in: Proceedings of the International Geometrical Colloquium, Moscow 1993. 
  5. [Bo] A. Borel et al.: Intersection Cohomology, Progr. Math. 50, Birkhäuser, Boston etc., 1984. 
  6. [Bd] G. Bredon: Sheaf Theory, MacGraw-Hill, New York etc., 1967. 
  7. [Br, He] W. Bruns und J. Herzog: Cohen-Macaulay rings, Cambridge Univ. Press, Cambridge, 1993. 
  8. [Da] V. I. Danilov: The Geometry of Toric Varieties, Russian Math. Surveys 33:2 (1978), 97-154, engl. Übers. von Geometrija toričeskich mnogoobrazij, Uspekhi Mat. Nauk 33:2, 200 (1978), 85-134, 247. 
  9. [Di] A. Dimca: Singularities and Topology of Hypersurfaces, Springer Universitext, Springer-Verlag, New York etc., 1992. Zbl0753.57001
  10. [Eh] F. Ehlers: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten, Math. Ann. 218 (1975), 127-156. Zbl0301.14003
  11. [Ei 1 ] M. Eikelberg: The Picard Group of a Compact Toric Variety, Results Math. 22 (1992), 509-527. Zbl0786.14031
  12. [Ei 2 ] M. Eikelberg: Picard Groups of Compact Toric Varieties and Combinatorial Classes of Fans, Results Math. 23 (1993), 251-293. Zbl0811.14044
  13. [Ew] G. Ewald: Combinatorial Convexity and Algebraic Geometry, to appear in Grad. Texts in Math., Springer-Verlag New York etc. 
  14. [Fi] K.-H. Fieseler: Rational Intersection Cohomology of Projective Toric Varieties, J. Reine Angew. Math. 413 (1991), 88-98. Zbl0716.14006
  15. [Fi, Kp] K.-H. Fieseler und L. Kaup: On the Hard Lefschetz Theorem in Intersection Homology of Complex Varieties with Isolated Singularities, Aequationes Math. 34 (1987), 240-263. Zbl0648.14009
  16. [Fu] W. Fulton: Introduction to Toric Varieties, Ann. of Math. Stud., Princeton Univ. Press 1993. 
  17. [Go, MPh] M. Goresky and R. MacPherson: Intersection Homology II, Invent. Math. 72 (1983), 77-130. Zbl0529.55007
  18. [Gr, Ha] Ph. Griffiths and J. Harris: Principles of Algebraic Geometry, Pure Appl. Math., Wiley, New York etc., 1978. 
  19. [Is] M.-N. Ishida: Torus embeddings and dualizing complexes, Tôhoku Math. J. (2) 32 (1980), 111-146. Zbl0454.14021
  20. [Kp 1 ] L. Kaup: Poincaré-Dualität für Räume mit Normalisierung, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 1-31. 
  21. [Kp 2 ] L. Kaup: Zur Homologie projektiv-algebraischer Varietäten, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 479-513. Zbl0236.32006
  22. [Kp, Fi] L. Kaup und K.-H. Fieseler: Singular Poincaré Duality and Intersection Homology, in: Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc. 6 (1986), 113-161. 
  23. [MCo] M. McConnell: The Rational Homology of Toric Varieties is not a Combinatorial Invariant, Proc. Amer. Math. Soc. 105 (1989), 986-991. Zbl0671.52007
  24. [MPh] R. MacPherson: Chern Classes for Singular Algebraic Varieties, Ann. of Math. (2) 100 (1974), 423-432. Zbl0311.14001
  25. [Od] T. Oda: Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), Bd. 15, Springer-Verlag, Berlin etc., 1988. 
  26. [Sc] M. H. Schwartz: Classes caractéristiques définies par une stratification d'une variété analytique complexe, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 3262-3264 et 3535-3537. Zbl0139.16901
  27. [Wa] K. Watanabe: Certain invariant subrings are Gorenstein I, II, Osaka J. Math. 11 (1974), 1-8, 379-388. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.