Invariante Divisoren und Schnitthomologie von torischen Varietäten
Gottfried Barthel; Jean-Paul Brasselet; Karl-Heinz Fieseler; Ludger Kaup
Banach Center Publications (1996)
- Volume: 36, Issue: 1, page 9-23
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topBarthel, Gottfried, et al. "Invariante Divisoren und Schnitthomologie von torischen Varietäten." Banach Center Publications 36.1 (1996): 9-23. <http://eudml.org/doc/208587>.
@article{Barthel1996,
author = {Barthel, Gottfried, Brasselet, Jean-Paul, Fieseler, Karl-Heinz, Kaup, Ludger},
journal = {Banach Center Publications},
keywords = {toric variety; intersection homology; perservity; divisor class group; fan},
language = {ger},
number = {1},
pages = {9-23},
title = {Invariante Divisoren und Schnitthomologie von torischen Varietäten},
url = {http://eudml.org/doc/208587},
volume = {36},
year = {1996},
}
TY - JOUR
AU - Barthel, Gottfried
AU - Brasselet, Jean-Paul
AU - Fieseler, Karl-Heinz
AU - Kaup, Ludger
TI - Invariante Divisoren und Schnitthomologie von torischen Varietäten
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 9
EP - 23
LA - ger
KW - toric variety; intersection homology; perservity; divisor class group; fan
UR - http://eudml.org/doc/208587
ER -
References
top- [BBF] G. Barthel, J.-P. Brasselet und K.-H. Fieseler: Classes de Chern des variétés toriques singulières, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 187-192.
- [BBFGK] G. Barthel, J.-P. Brasselet, K.-H. Fieseler, O. Gabber und L. Kaup: Sur le relèvement des cycles algébriques en homologie d'intersection, Ann. of Math. (2) 141 (1995), 147-179. Zbl0827.14012
- [BBFK] G. Barthel, J.-P. Brasselet, K.-H. Fieseler und L. Kaup: Diviseurs invariants et homologie de variétés toriques, erscheint in Tôhoku Math. J. (2), vorauss. 1996.
- [BF] G. Barthel und K.-H. Fieseler: Invariant Divisors and Homology of Compact Complex Toric Varieties, erscheint in: Proceedings of the International Geometrical Colloquium, Moscow 1993.
- [Bo] A. Borel et al.: Intersection Cohomology, Progr. Math. 50, Birkhäuser, Boston etc., 1984.
- [Bd] G. Bredon: Sheaf Theory, MacGraw-Hill, New York etc., 1967.
- [Br, He] W. Bruns und J. Herzog: Cohen-Macaulay rings, Cambridge Univ. Press, Cambridge, 1993.
- [Da] V. I. Danilov: The Geometry of Toric Varieties, Russian Math. Surveys 33:2 (1978), 97-154, engl. Übers. von Geometrija toričeskich mnogoobrazij, Uspekhi Mat. Nauk 33:2, 200 (1978), 85-134, 247.
- [Di] A. Dimca: Singularities and Topology of Hypersurfaces, Springer Universitext, Springer-Verlag, New York etc., 1992. Zbl0753.57001
- [Eh] F. Ehlers: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten, Math. Ann. 218 (1975), 127-156. Zbl0301.14003
- [Ei] M. Eikelberg: The Picard Group of a Compact Toric Variety, Results Math. 22 (1992), 509-527. Zbl0786.14031
- [Ei] M. Eikelberg: Picard Groups of Compact Toric Varieties and Combinatorial Classes of Fans, Results Math. 23 (1993), 251-293. Zbl0811.14044
- [Ew] G. Ewald: Combinatorial Convexity and Algebraic Geometry, to appear in Grad. Texts in Math., Springer-Verlag New York etc.
- [Fi] K.-H. Fieseler: Rational Intersection Cohomology of Projective Toric Varieties, J. Reine Angew. Math. 413 (1991), 88-98. Zbl0716.14006
- [Fi, Kp] K.-H. Fieseler und L. Kaup: On the Hard Lefschetz Theorem in Intersection Homology of Complex Varieties with Isolated Singularities, Aequationes Math. 34 (1987), 240-263. Zbl0648.14009
- [Fu] W. Fulton: Introduction to Toric Varieties, Ann. of Math. Stud., Princeton Univ. Press 1993.
- [Go, MPh] M. Goresky and R. MacPherson: Intersection Homology II, Invent. Math. 72 (1983), 77-130. Zbl0529.55007
- [Gr, Ha] Ph. Griffiths and J. Harris: Principles of Algebraic Geometry, Pure Appl. Math., Wiley, New York etc., 1978.
- [Is] M.-N. Ishida: Torus embeddings and dualizing complexes, Tôhoku Math. J. (2) 32 (1980), 111-146. Zbl0454.14021
- [Kp] L. Kaup: Poincaré-Dualität für Räume mit Normalisierung, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 1-31.
- [Kp] L. Kaup: Zur Homologie projektiv-algebraischer Varietäten, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 479-513. Zbl0236.32006
- [Kp, Fi] L. Kaup und K.-H. Fieseler: Singular Poincaré Duality and Intersection Homology, in: Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc. 6 (1986), 113-161.
- [MCo] M. McConnell: The Rational Homology of Toric Varieties is not a Combinatorial Invariant, Proc. Amer. Math. Soc. 105 (1989), 986-991. Zbl0671.52007
- [MPh] R. MacPherson: Chern Classes for Singular Algebraic Varieties, Ann. of Math. (2) 100 (1974), 423-432. Zbl0311.14001
- [Od] T. Oda: Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), Bd. 15, Springer-Verlag, Berlin etc., 1988.
- [Sc] M. H. Schwartz: Classes caractéristiques définies par une stratification d'une variété analytique complexe, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 3262-3264 et 3535-3537. Zbl0139.16901
- [Wa] K. Watanabe: Certain invariant subrings are Gorenstein I, II, Osaka J. Math. 11 (1974), 1-8, 379-388.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.