Spinors in braided geometry
Mićo Đurđević; Zbigniew Oziewicz
Banach Center Publications (1996)
- Volume: 37, Issue: 1, page 315-325
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topĐurđević, Mićo, and Oziewicz, Zbigniew. "Spinors in braided geometry." Banach Center Publications 37.1 (1996): 315-325. <http://eudml.org/doc/208608>.
@article{Đurđević1996,
abstract = {Let V be a ℂ-space, $σ ∈ End(V^\{⊗2\})$ be a pre-braid operator and let $F ∈ lin(V^\{⊗2\},ℂ).$ This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra $Cl(V,σ,0) ≡ V^\{∧\}(σ)$. If $σ ≠ σ^\{-1\}$ and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation is faithful and irreducible.},
author = {Đurđević, Mićo, Oziewicz, Zbigniew},
journal = {Banach Center Publications},
keywords = {Clifford algebras; spinor representations; braided geometry; braided exterior algebra; Hopf algebra; braided derivation; braided Chevalley deformation; quantum Yang Baxter equation; Grassmann algebra},
language = {eng},
number = {1},
pages = {315-325},
title = {Spinors in braided geometry},
url = {http://eudml.org/doc/208608},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Đurđević, Mićo
AU - Oziewicz, Zbigniew
TI - Spinors in braided geometry
JO - Banach Center Publications
PY - 1996
VL - 37
IS - 1
SP - 315
EP - 325
AB - Let V be a ℂ-space, $σ ∈ End(V^{⊗2})$ be a pre-braid operator and let $F ∈ lin(V^{⊗2},ℂ).$ This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra $Cl(V,σ,0) ≡ V^{∧}(σ)$. If $σ ≠ σ^{-1}$ and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation is faithful and irreducible.
LA - eng
KW - Clifford algebras; spinor representations; braided geometry; braided exterior algebra; Hopf algebra; braided derivation; braided Chevalley deformation; quantum Yang Baxter equation; Grassmann algebra
UR - http://eudml.org/doc/208608
ER -
References
top- [1] R. Bautista, A. Criscuolo, M. Đurđević, M. Rosenbaum and J.D. Vergara, Quantum Clifford algebras from spinor representations, J. Math. Phys. (1996), to appear. Zbl0861.15029
- [2] N. Bourbaki, Algébre, chap. 9: formes sesquilinéaries et formes quadratiques, Paris, Hermann, 1959.
- [3] É. Cartan, The Theory of Spinors, Dover Pub., New York, 1966. Zbl0147.40101
- [4] A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras. Spinor Structures, Mathematics and its Applications vol. 57, Kluwer Academic Publishers, 1990.
- [5] M. Đurđević, Braided Clifford algebras as braided quantum groups, Adv. Apppl. Cliff. Algebras 4 (2) (1994), 145-156. Zbl0841.15024
- [6] M. Đurđević, Generalized braided quantum groups, Isr. J. Math. (1996), to appear.
- [7] T. Hayashi, Q-analogues of Clifford and Weyl algebras - spinor and oscilator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129-144.
- [8] S. Majid, Braided groups and algebraic quantum field theories, Lett. Math. Phys. 22 (1991), 167-176. Zbl0745.16019
- [9] S. Majid, Braided groups, J. Pure and Applied Algebra 86 (1993), 187-221. Zbl0797.17004
- [10] S. Majid, Transmutation theory and rank for quantum braided groups, Math. Proc. Camb. Phil. Soc. 113 (1993), 45-70. Zbl0781.17006
- [11] S. Majid, Free braided differential calculus, braided binomial theorem and the braided exponential map, J. Math. Phys. 34 (1993), 4843-4856. Zbl0807.16035
- [12] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press 1995. Zbl0857.17009
- [13] Z. Oziewicz, E. Paal and J. Różański, Derivations in braided geometry, Acta Physica Polonica B 26 (7) (1995), 1253-1273. Zbl0966.81517
- [14] Z. Oziewicz, Clifford algebra for Hecke braid, in: Clifford Algebras and Spinor Structures, R. Ablamowicz and P. Lounesto (ed.), Mathematics and Its Applications vol. 321, Kluwer Academic Publishers, Dordrecht 1995, pp. 397-411. Zbl0845.15011
- [15] S. Shnider and S. Sternberg, Quantum Groups, from coalgebras to Drinfeld algebras a guided tour, International Press Incorporated, Boston, 1993. Zbl0845.17015
- [16] M. E. Sweedler, Hopf Algebras, Benjamin, Inc., New York, 1969.
- [17] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170. Zbl0751.58042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.