-graded polynomial identities for
This article deals with vector valued differential forms on -manifolds. As a generalization of the exterior product, we introduce an operator that combines -valued forms with -valued forms. We discuss the main properties of this operator such as (multi)linearity, associativity and its behavior under pullbacks, push-outs, exterior differentiation of forms, etc. Finally we present applications for Lie groups and fiber bundles.
We show that a free graded commutative Banach algebra over a (purely odd) Banach space is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.
In this paper, we study positive stability and D-stability of P-matrices.We introduce the property of Dθ-stability, i.e., the stability with respect to a given order θ. For an n × n P-matrix A, we prove a new criterion of D-stability and Dθ-stability, based on the properties of matrix scalings.