Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in N

Adib Fadlalla

Banach Center Publications (1996)

  • Volume: 37, Issue: 1, page 85-94
  • ISSN: 0137-6934

Abstract

top
In this article, estimates of the hyperbolic and Carathéodory distances in domains G n , n ≥ 1, are obtained. They are equally valid for the Kobayashi distance.

How to cite

top

Fadlalla, Adib. "Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in $ℂ^N$." Banach Center Publications 37.1 (1996): 85-94. <http://eudml.org/doc/208620>.

@article{Fadlalla1996,
abstract = {In this article, estimates of the hyperbolic and Carathéodory distances in domains $G ⊂ ⊂ ℂ^n$, n ≥ 1, are obtained. They are equally valid for the Kobayashi distance.},
author = {Fadlalla, Adib},
journal = {Banach Center Publications},
keywords = {strongly pseudoconvex domains; convex domains; Carathéodory distance; hyperbolic distance; estimates; Kobayashi distance},
language = {eng},
number = {1},
pages = {85-94},
title = {Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in $ℂ^N$},
url = {http://eudml.org/doc/208620},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Fadlalla, Adib
TI - Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in $ℂ^N$
JO - Banach Center Publications
PY - 1996
VL - 37
IS - 1
SP - 85
EP - 94
AB - In this article, estimates of the hyperbolic and Carathéodory distances in domains $G ⊂ ⊂ ℂ^n$, n ≥ 1, are obtained. They are equally valid for the Kobayashi distance.
LA - eng
KW - strongly pseudoconvex domains; convex domains; Carathéodory distance; hyperbolic distance; estimates; Kobayashi distance
UR - http://eudml.org/doc/208620
ER -

References

top
  1. [1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Italy: Mediterranean Press, 1989. 
  2. [2] C. Carathéodory, Über eine spezielle Metrik, die in der Theorie der analytischen Funktionen auftritt, Atti Pontif. Accad. Sci. Nuovi Lincei 80 (1927), 135-141. 
  3. [3] A. A. Fadlalla, On the group of automorphism of the Euclidean hypersphere, Mathematika 15 (1968), 193-198. Zbl0167.06701
  4. [4] A. A. Fadlalla, On the boundary behaviour of the Carathéodory and Kobayashi distances in strongly pseudoconvex domains in n , Proc. Int. Workshop in Wuppertal (1990), Aspects of Mathematics (1990), 111-114. Zbl0738.32016
  5. [5] A. A. Fadlalla, The Carathéodory distance in strongly pseudoconvex domains, Math. Ann. 298 (1994), 141-144. Zbl0788.32019
  6. [6] F. Forestneric, J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. Zbl0644.32013
  7. [7] E. Vesentini, Complex geodesic, Compositio Math. 44 (1981), 375-394. Zbl0488.30015
  8. [8] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf den Rand bei beschränkten streng-pseudokonvexen Gebieten in n , Math. Ann. 204 (1973), 239-261. 

NotesEmbed ?

top

You must be logged in to post comments.