Complex geodesics
Compositio Mathematica (1981)
- Volume: 44, Issue: 1-3, page 375-394
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVesentini, Edoardo. "Complex geodesics." Compositio Mathematica 44.1-3 (1981): 375-394. <http://eudml.org/doc/89521>.
@article{Vesentini1981,
author = {Vesentini, Edoardo},
journal = {Compositio Mathematica},
keywords = {complex geodesics; Caratheodory and Kobayashi invariant pseudo-distances; pseudo-metrics; affine maps},
language = {eng},
number = {1-3},
pages = {375-394},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Complex geodesics},
url = {http://eudml.org/doc/89521},
volume = {44},
year = {1981},
}
TY - JOUR
AU - Vesentini, Edoardo
TI - Complex geodesics
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 44
IS - 1-3
SP - 375
EP - 394
LA - eng
KW - complex geodesics; Caratheodory and Kobayashi invariant pseudo-distances; pseudo-metrics; affine maps
UR - http://eudml.org/doc/89521
ER -
References
top- [1] L.V. Ahlfors: Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973. Zbl0272.30012MR357743
- [2] S. Banach: Théorie des opérations linéaires, Monografje Matematyczne, Warsaw, 1932. JFM58.0420.01
- [3] T. Franzoni and E. Vesentini: Holomorphic maps and invariant distances, North Holland, Amsterdam, 1980. Zbl0447.46040MR563329
- [4] G.M. Goluzin: Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, vol. 26, Amer. Math. Soc., Providence, R.I., 1969. Zbl0183.07502MR247039
- [5] L.A. Harris: Schwarz's lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A., 62 (1969), 1014-1017. Zbl0199.19401MR275179
- [6] L.A. Harris: Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, in "Advances in Holomorphy" (Editor J.A. Barroso), North-Holland, Amsterdam, 1979, 345-406. Zbl0409.46053MR520667
- [7] E. Hille and R.S. Phillips: Functional analysis and semi-groups, Amer. Math. Soc. Colloquim Publ., vol. 36, Amer. Math. Soc., Providence, R.I., 1957. Zbl0078.10004MR89373
- [8] Ph. Noverraz: Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North-Holland, Amsterdam, 1973. Zbl0251.46049MR358348
- [9] H.H. Schaefer: Topological vector spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0217.16002MR342978
- [10] T.J. Suffridge: Starlike and convex maps in Banach spaces, Pacific J. Math., 46 (1973), 575-589. Zbl0263.30016MR374914
- [11] E. Thorp and R. Whitley: The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18 (1967), 640-646. Zbl0185.20102MR214794
- [12] E. Vesentini: Maximum theorems for vector-valued holomorphic functions, Rend. Sem. Mat. Fis. Milano, 40 (1970), 24-55. Zbl0221.58007MR287299
- [13] E. Vesentini: Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa (4) 7 (1979), 39-68. Zbl0413.46039MR529475
- [14] E. Vesentini: Invariant distances and invariant differential metrics in locally convex spaces, Proc. Stefan Banach International Mathematical Center, to appear. Zbl0505.32020MR738313
Citations in EuDML Documents
top- Marek Jarnicki, Peter Pflug, Rein Zeinstra, Geodesics for convex complex ellipsoids
- Edoardo Vesentini, On a class of inner maps
- Edoardo Vesentini, Complex geodesics and isometries in Cartan domains of type four
- Chiara De Fabritiis, Fixed points for automorphisms in Cartan domains of type IV
- Do Duc Thai, The fixed points of holomorphic maps on a convex domain
- Jean-Pierre Vigué, Sur les domaines hyperboliques pour la distance intégrée de Carathéodory
- Marco Abate, Giorgio Patrizio, Complex geodesics and Finsler metrics
- Adib Fadlalla, Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in
- Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains
- Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.