Complex geodesics

Edoardo Vesentini

Compositio Mathematica (1981)

  • Volume: 44, Issue: 1-3, page 375-394
  • ISSN: 0010-437X

How to cite


Vesentini, Edoardo. "Complex geodesics." Compositio Mathematica 44.1-3 (1981): 375-394. <>.

author = {Vesentini, Edoardo},
journal = {Compositio Mathematica},
keywords = {complex geodesics; Caratheodory and Kobayashi invariant pseudo-distances; pseudo-metrics; affine maps},
language = {eng},
number = {1-3},
pages = {375-394},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Complex geodesics},
url = {},
volume = {44},
year = {1981},

AU - Vesentini, Edoardo
TI - Complex geodesics
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 44
IS - 1-3
SP - 375
EP - 394
LA - eng
KW - complex geodesics; Caratheodory and Kobayashi invariant pseudo-distances; pseudo-metrics; affine maps
UR -
ER -


  1. [1] L.V. Ahlfors: Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973. Zbl0272.30012MR357743
  2. [2] S. Banach: Théorie des opérations linéaires, Monografje Matematyczne, Warsaw, 1932. JFM58.0420.01
  3. [3] T. Franzoni and E. Vesentini: Holomorphic maps and invariant distances, North Holland, Amsterdam, 1980. Zbl0447.46040MR563329
  4. [4] G.M. Goluzin: Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, vol. 26, Amer. Math. Soc., Providence, R.I., 1969. Zbl0183.07502MR247039
  5. [5] L.A. Harris: Schwarz's lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A., 62 (1969), 1014-1017. Zbl0199.19401MR275179
  6. [6] L.A. Harris: Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, in "Advances in Holomorphy" (Editor J.A. Barroso), North-Holland, Amsterdam, 1979, 345-406. Zbl0409.46053MR520667
  7. [7] E. Hille and R.S. Phillips: Functional analysis and semi-groups, Amer. Math. Soc. Colloquim Publ., vol. 36, Amer. Math. Soc., Providence, R.I., 1957. Zbl0078.10004MR89373
  8. [8] Ph. Noverraz: Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North-Holland, Amsterdam, 1973. Zbl0251.46049MR358348
  9. [9] H.H. Schaefer: Topological vector spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0217.16002MR342978
  10. [10] T.J. Suffridge: Starlike and convex maps in Banach spaces, Pacific J. Math., 46 (1973), 575-589. Zbl0263.30016MR374914
  11. [11] E. Thorp and R. Whitley: The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18 (1967), 640-646. Zbl0185.20102MR214794
  12. [12] E. Vesentini: Maximum theorems for vector-valued holomorphic functions, Rend. Sem. Mat. Fis. Milano, 40 (1970), 24-55. Zbl0221.58007MR287299
  13. [13] E. Vesentini: Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa (4) 7 (1979), 39-68. Zbl0413.46039MR529475
  14. [14] E. Vesentini: Invariant distances and invariant differential metrics in locally convex spaces, Proc. Stefan Banach International Mathematical Center, to appear. Zbl0505.32020MR738313

Citations in EuDML Documents

  1. Marek Jarnicki, Peter Pflug, Rein Zeinstra, Geodesics for convex complex ellipsoids
  2. Edoardo Vesentini, On a class of inner maps
  3. Edoardo Vesentini, Complex geodesics and isometries in Cartan domains of type four
  4. Chiara De Fabritiis, Fixed points for automorphisms in Cartan domains of type IV
  5. Do Duc Thai, The fixed points of holomorphic maps on a convex domain
  6. Jean-Pierre Vigué, Sur les domaines hyperboliques pour la distance intégrée de Carathéodory
  7. Marco Abate, Giorgio Patrizio, Complex geodesics and Finsler metrics
  8. Adib Fadlalla, Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in N
  9. Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains
  10. Graziano Gentili, On non-Uniqueness of Complex Geodesies in Convex Bounded Domains

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.