Spectral decompositions in Banach spaces and the Hilbert transform

T. Gillespie

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 105-118
  • ISSN: 0137-6934

Abstract

top
This paper gives a survey of some recent developments in the spectral theory of linear operators on Banach spaces in which the Hilbert transform and its abstract analogues play a fundamental role.

How to cite

top

Gillespie, T.. "Spectral decompositions in Banach spaces and the Hilbert transform." Banach Center Publications 38.1 (1997): 105-118. <http://eudml.org/doc/208623>.

@article{Gillespie1997,
abstract = {This paper gives a survey of some recent developments in the spectral theory of linear operators on Banach spaces in which the Hilbert transform and its abstract analogues play a fundamental role.},
author = {Gillespie, T.},
journal = {Banach Center Publications},
keywords = {spectral theory of linear operators on Banach spaces; Hilbert transform},
language = {eng},
number = {1},
pages = {105-118},
title = {Spectral decompositions in Banach spaces and the Hilbert transform},
url = {http://eudml.org/doc/208623},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Gillespie, T.
TI - Spectral decompositions in Banach spaces and the Hilbert transform
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 105
EP - 118
AB - This paper gives a survey of some recent developments in the spectral theory of linear operators on Banach spaces in which the Hilbert transform and its abstract analogues play a fundamental role.
LA - eng
KW - spectral theory of linear operators on Banach spaces; Hilbert transform
UR - http://eudml.org/doc/208623
ER -

References

top
  1. [1] H. Benzinger, E. Berkson and T. A. Gillespie, Spectral families of projections, semigroups, and differential operators, Trans. Amer. Math. Soc. 275 (1983), 431-475. Zbl0509.47028
  2. [2] E. Berkson and T. A. Gillespie, AC functions on the circle and spectral families, J. Operator Theory 13 (1985), 33-47. Zbl0566.47011
  3. [3] E. Berkson and T. A. Gillespie, Fourier series criteria for operator decomposability, Integral Equations Operator Theory 9 (1986), 767-789. Zbl0607.47026
  4. [4] E. Berkson and T. A. Gillespie, Stečkin's theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), 140-170. Zbl0607.47027
  5. [5] E. Berkson and T. A. Gillespie, The spectral decomposition of weighted shifts and the A p condition, Colloq. Math. 60/61 (1990), 507-518. Zbl0819.47038
  6. [6] E. Berkson and T. A. Gillespie, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994), 13-49. Zbl0823.42004
  7. [7] E. Berkson, T. A. Gillespie and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. Zbl0609.47042
  8. [8] E. Berkson, T. A. Gillespie and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), 1-14. 
  9. [9] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, ibid. 21 (1983), 163-168. Zbl0533.46008
  10. [10] J. Bourgain, Vector-valued singular integrals and the H 1 -BMO duality, in: Probability Theory and Harmonic Analysis, J.-A. Chao and W. A. Woyczyński (eds.), Monographs and Textbooks in Pure and Appl. Math. 98, Marcel Dekker, New York, 1986, 1-19. 
  11. [11] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. in honor of A. Zygmund (Chicago, 1981), W. Beckner et al. (eds.), Wadsworth, Belmont, Calif., 1983, 270-286. 
  12. [12] M. L. Cartwright, Manuscripts of Hardy, Littlewood, Marcel Riesz and Titchmarsh, Bull. London Math. Soc. 14 (1982), 472-532. 
  13. [13] R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, 1977. Zbl0371.43009
  14. [14] I. Doust, Well-bounded operators and the geometry of Banach spaces, Thesis, University of Edinburgh, 1988. 
  15. [15] I. Doust and B. Z. Qiu, The spectral theorem for well-bounded operators, J. Austral. Math. Soc. Ser. A 54 (1993), 334-351. Zbl0801.47022
  16. [16] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, London, 1978. Zbl0384.47001
  17. [17] H. R. Dowson and P. G. Spain, An example in the theory of well-bounded operators, Proc. Amer. Math. Soc. 32 (1972), 205-208. Zbl0207.13705
  18. [18] T. A. Gillespie, Logarithms of L p translations, Indiana Univ. Math. J. 24 (1975), 1037-1045. Zbl0295.43009
  19. [19] T. A. Gillespie, A spectral theorem for L p translations, J. London Math. Soc. (2) 11 (1975), 499-508. 
  20. [20] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. Zbl0262.44004
  21. [21] J. R. Ringrose, On well-bounded operators, J. Austral. Math. Soc. 1 (1960), 334-343. Zbl0104.08902
  22. [22] J. R. Ringrose, On well-bounded operators II, Proc. London Math. Soc. (3) 13 (1963), 613-638. Zbl0121.33403
  23. [23] D. R. Smart, Conditionally convergent spectral expansions, J. Austral. Math. Soc. 1 (1960), 319-333. Zbl0104.08901
  24. [24] S. B. Stečkin, On bilinear forms, Dokl. Akad. Nauk SSSR 71 (1950), 237-240 (in Russian). 
  25. [25] E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z. 25 (1926), 321-347. Zbl52.0213.03
  26. [26] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, Cambridge, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.