Spectral decompositions and harmonic analysis on UMD spaces
Studia Mathematica (1994)
- Volume: 112, Issue: 1, page 13-49
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBerkson, Earl, and Gillespie, T.. "Spectral decompositions and harmonic analysis on UMD spaces." Studia Mathematica 112.1 (1994): 13-49. <http://eudml.org/doc/216134>.
@article{Berkson1994,
abstract = {We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for $L_X^p$ to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.},
author = {Berkson, Earl, Gillespie, T.},
journal = {Studia Mathematica},
keywords = {spectral decomposition; multipliers; Fourier transforms; UMD space; Littlewood-Paley theorem; strong Marcinkiewicz multiplier theorem; Riesz property},
language = {eng},
number = {1},
pages = {13-49},
title = {Spectral decompositions and harmonic analysis on UMD spaces},
url = {http://eudml.org/doc/216134},
volume = {112},
year = {1994},
}
TY - JOUR
AU - Berkson, Earl
AU - Gillespie, T.
TI - Spectral decompositions and harmonic analysis on UMD spaces
JO - Studia Mathematica
PY - 1994
VL - 112
IS - 1
SP - 13
EP - 49
AB - We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for $L_X^p$ to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.
LA - eng
KW - spectral decomposition; multipliers; Fourier transforms; UMD space; Littlewood-Paley theorem; strong Marcinkiewicz multiplier theorem; Riesz property
UR - http://eudml.org/doc/216134
ER -
References
top- [1] N. Asmar, E. Berkson and T. A. Gillespie, Transferred bounds for square functions, Houston J. Math. 17 (1991), 525-550. Zbl0784.43003
- [2] N. Asmar, E. Berkson and T. A. Gillespie, Spectral integration of Marcinkiewicz multipliers, Canad. J. Math. 45 (1993), 470-482. Zbl0817.42005
- [3] E. Berkson, J. Bourgain and T. A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on -subspaces, Integral Equations Operator Theory 14 (1991), 678-715. Zbl0786.47003
- [4] E. Berkson and T. A. Gillespie, Fourier series criteria for operator decomposability, ibid. 9 (1986), 767-789. Zbl0607.47026
- [5] E. Berkson and T. A. Gillespie, Stechkin's theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), 140-170. Zbl0607.47027
- [6] E. Berkson and T. A. Gillespie, Spectral decompositions and vector-valued transference, in: Analysis at Urbana II (Proceedings of Special Year in Modern Analysis at the Univ. of Ill., 1986-87), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, Cambridge, 1989, 22-51.
- [7] E. Berkson and T. A. Gillespie, Transference and extension of Fourier multipliers for , J. London Math. Soc. (2) 41 (1990), 472-488. Zbl0693.42009
- [8] E. Berkson, T. A. Gillespie and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. Zbl0609.47042
- [9] E. Berkson, T. A. Gillespie and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), 1-14.
- [10] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, ibid. 21 (1983), 163-168. Zbl0533.46008
- [11] J. Bourgain, Vector-valued singular integrals and the -BMO duality, in: Probability Theory and Harmonic Analysis (Mini-Conference on Probability and Harmonic Analysis, Cleveland, 1983), J.-A. Chao and W. A. Woyczyński (eds.), Monographs and Textbooks in Pure and Appl. Math. 98, Marcel Dekker, New York, 1986, 1-19.
- [12] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Proc. Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, 1981), W. Beckner et al. (eds.), Wadsworth, Belmont, Calif., 1983, 270-286.
- [13] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monographs 12, Academic Press, New York, 1978. Zbl0384.47001
- [14] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Ergeb. Math. Grenzgeb. 90, Springer, Berlin, 1977.
- [15] T. A. Gillespie, Commuting well-bounded operators on Hilbert spaces, Proc. Edinburgh Math. Soc. (2) 20 (1976), 167-172. Zbl0334.47025
- [16] J.-P. Kahane, Sur les sommes vectorielles , C. R. Acad. Sci. Paris 259 (1964), 2577-2580.
- [17] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I (Sequence Spaces), Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. Zbl0362.46013
- [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II (Function Spaces), Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979. Zbl0403.46022
- [19] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton University Press, 1981. Zbl0474.43004
- [20] D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.