# Spectral projections, semigroups of operators, and the Laplace transform

Banach Center Publications (1997)

- Volume: 38, Issue: 1, page 193-204
- ISSN: 0137-6934

## Access Full Article

top## How to cite

topdeLaubenfels, Ralph. "Spectral projections, semigroups of operators, and the Laplace transform." Banach Center Publications 38.1 (1997): 193-204. <http://eudml.org/doc/208628>.

@article{deLaubenfels1997,

author = {deLaubenfels, Ralph},

journal = {Banach Center Publications},

keywords = {scalar operator; well-bounded operator; functional calculus; Laplace transform; strongly continuous semigroups},

language = {eng},

number = {1},

pages = {193-204},

title = {Spectral projections, semigroups of operators, and the Laplace transform},

url = {http://eudml.org/doc/208628},

volume = {38},

year = {1997},

}

TY - JOUR

AU - deLaubenfels, Ralph

TI - Spectral projections, semigroups of operators, and the Laplace transform

JO - Banach Center Publications

PY - 1997

VL - 38

IS - 1

SP - 193

EP - 204

LA - eng

KW - scalar operator; well-bounded operator; functional calculus; Laplace transform; strongly continuous semigroups

UR - http://eudml.org/doc/208628

ER -

## References

top- [1] E. Albrecht and W. J. Ricker, Local spectral properties of constant coefficient differential operators in ${L}^{p}\left({\mathbb{R}}^{n}\right)$, J. Operator Theory 24 (1990), 85-103. Zbl0790.47025
- [2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. Zbl0637.44001
- [3] E. Berkson, T. A. Gillespie and S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. 53 (1986), 489-517. Zbl0609.47042
- [4] K. Boyadzhiev and R. deLaubenfels, Spectral theorem for generators of strongly continuous groups on a Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 127-136.
- [5] I. Colojoara and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. Zbl0189.44201
- [6] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded ${H}^{\infty}$ functional calculus, J. Austral. Math. Soc., to appear. Zbl0853.47010
- [7] R. deLaubenfels, d/dx, on C[0,1], is ${C}^{1}$ scalar, Proc. Amer. Math. Soc. 103 (1988), 215-221.
- [8] R. deLaubenfels, Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform, Studia Math. 103 (1992), 143-159. Zbl0811.47012
- [9] R. deLaubenfels, Regularized functional calculi and evolution equations, in: Proceedings of Evolution Equations Conference, Baton Rouge 1993, Marcel Dekker, 1994, 141-152.
- [10] R. deLaubenfels, A functional calculus approach to semigroups of operators, in: Seminar Notes in Functional Analysis and PDEs, Louisiana State University, 1993/94, 83-107.
- [11] R. deLaubenfels, H. Emamirad and M. Jazar, Regularized scalar operators, Appl. Math. Lett., to appear.
- [12] R. deLaubenfels and S. Kantorovitz, The semi-simplicity manifold for arbitrary Banach spaces, J. Funct. Anal. 113 (1995), 138-167. Zbl0867.47028
- [13] I. Doust and R. deLaubenfels, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.
- [14] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978. Zbl0384.47001
- [15] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Interscience, New York, 1971.
- [16] I. Erdelyi and S. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge, 1985. Zbl0577.47035
- [17] J. E. Galé and T. Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, preprint, 1995. Zbl0897.43002
- [18] J. A. Goldstein, Semigroups of Operators and Applications, Oxford, New York, 1985.
- [19] R. Lange and B. Nagy, Semigroups and scalar-type operators in Banach spaces, J. Funct. Anal. 119 (1994), 468-480. Zbl0812.47039
- [20] R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Soc., Providence, 1992. Zbl0765.47009
- [21] F. Neubrander and B. Hennig, On representations, inversions and approximations of Laplace transforms in Banach spaces, Appl. Anal. 49 (1993), 151-170. Zbl0791.44002
- [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
- [23] D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.
- [24] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946. Zbl0060.24801
- [25] F. H. Vasilescu, Analytic Functional Calculus and Spectral Decomposition, Reidel, Dordrecht, 1982. Zbl0495.47013
- [26] S. Zaidman, On the representation of vector-valued functions by Laplace transforms, Duke Math. J. 26 (1959), 189-191. Zbl0084.32801

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.