Generalized eigenfunction expansions and spectral decompositions

Mihai Putinar

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 265-286
  • ISSN: 0137-6934

Abstract

top
The paper relates several generalized eigenfunction expansions to classical spectral decomposition properties. From this perspective one explains some recent results concerning the classes of decomposable and generalized scalar operators. In particular a universal dilation theory and two different functional models for related classes of operators are presented.

How to cite

top

Putinar, Mihai. "Generalized eigenfunction expansions and spectral decompositions." Banach Center Publications 38.1 (1997): 265-286. <http://eudml.org/doc/208635>.

@article{Putinar1997,
abstract = {The paper relates several generalized eigenfunction expansions to classical spectral decomposition properties. From this perspective one explains some recent results concerning the classes of decomposable and generalized scalar operators. In particular a universal dilation theory and two different functional models for related classes of operators are presented.},
author = {Putinar, Mihai},
journal = {Banach Center Publications},
keywords = {generalized eigenfunction expansions; spectral decomposition properties; decomposable and generalized scalar operators; universal dilation theory; different functional models},
language = {eng},
number = {1},
pages = {265-286},
title = {Generalized eigenfunction expansions and spectral decompositions},
url = {http://eudml.org/doc/208635},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Putinar, Mihai
TI - Generalized eigenfunction expansions and spectral decompositions
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 265
EP - 286
AB - The paper relates several generalized eigenfunction expansions to classical spectral decomposition properties. From this perspective one explains some recent results concerning the classes of decomposable and generalized scalar operators. In particular a universal dilation theory and two different functional models for related classes of operators are presented.
LA - eng
KW - generalized eigenfunction expansions; spectral decomposition properties; decomposable and generalized scalar operators; universal dilation theory; different functional models
UR - http://eudml.org/doc/208635
ER -

References

top
  1. Agler, J. (1985). Rational dilation in an annulus, Ann. of Math. 121, 537-564. Zbl0609.47013
  2. Albrecht, E. (1978). On two questions of Colojoarǎ and Foiaş, Manuscripta Math. 25, 1-15. Zbl0407.47017
  3. Albrecht, E. and Eschmeier, J. (1987). Functional models and local spectral theory, preprint. Zbl0881.47007
  4. Berezanskiĭ, Yu. M. (1968). Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc. Transl., Providence, R.I. 
  5. Bishop, E. (1959). A duality theorem for an arbitrary operator, Pacific J. Math. 9, 379-394. Zbl0086.31702
  6. Colojoarǎ, I. and Foiaş, C. (1968). Theory of Generalized Scalar Operators, Gordon and Breach, New York. Zbl0189.44201
  7. Dirac, P. A. M. (1930). The Principles of Quantum Mechanics, Clarendon Press, Oxford. Zbl56.0745.05
  8. Douglas, R. G. and Foiaş, C. (1976). A homological view in dilation theory, preprint. 
  9. Douglas, R. G. and Paulsen, V. (1989). Hilbert modules over function algebras, Pitman Res. Notes in Math. 219, Harlow. Zbl0686.46035
  10. Dunford, N. and Schwartz, J., Linear Operators, p. I. (1958), p. II. (1963), p. III. (1971), Wiley-Interscience, New York. 
  11. Dynkin, E. M. (1972). Functional calculus based on Cauchy-Green's formula, in: Research in linear operators and function theory. III, Leningrad Otdel. Mat. Inst. Steklov, 33-39 (in Russian). 
  12. Eschmeier, J. (1985). Spectral decompositions and decomposable multipliers, Manuscripta Math. 51, 201-224. Zbl0578.47024
  13. Eschmeier, J. and Prunaru, B. (1990). Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. 94, 196-222. Zbl0744.47003
  14. Eschmeier, J. and Putinar, M. (1984). Spectral theory and sheaf theory. III, J. Reine Angew. Math. 354, 150-163. Zbl0539.47002
  15. Eschmeier, J. and Putinar, M. (1988). Bishop's condition (β) and rich extensions of linear operators, Indiana Univ. Math. J. 37, 325-348. Zbl0674.47020
  16. Eschmeier, J. and Putinar, M. (1989). On quotients and restrictions of generalized scalar operators, J. Funct. Anal. 84, 115-134. Zbl0678.47029
  17. Eschmeier, J. and Putinar, M. (1996). Spectral Decompositions and Analytic Sheaves, Oxford University Press, Oxford. Zbl0855.47013
  18. Foiaş, C. (1963). Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. (Basel) 14, 341-349. Zbl0176.43802
  19. Frunzǎ, S. (1975). The Taylor spectrum and spectral decompositions, J. Funct. Anal. 19, 390-421. Zbl0306.47013
  20. Gamelin, T. (1970). Localization of the corona problem, Pacific J. Math. 34, 73-81. Zbl0199.18801
  21. Garnett, J. B. (1981). Bounded Analytic Functions, Academic Press, New York. Zbl0469.30024
  22. Gohberg, I. and Krein, M. G. (1969). Introduction to the Theory of Linear Non-selfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I. Zbl0181.13504
  23. Henkin, G. and Leiterer, J. (1984). Theory of Functions on Complex Manifolds, Birkhäuser, Basel-Boston-Stuttgart. 
  24. Hörmander, L. (1965). L 2 -estimates and existence theorems for the ¯ -operator, Acta Math. 113, 89-152. Zbl0158.11002
  25. Lange, R. (1981). A purely analytic criterion for a decomposable operator, Glasgow Math. J. 21, 69-70. Zbl0422.47017
  26. Levy, R. N. (1987). The Riemann-Roch theorem for complex spaces, Acta Math. 158, 149-188. Zbl0627.32004
  27. Lyubich, Yu. I. and Matsaev, V. I. (1962). Operators with separable spectrum, Mat. Sb. 56, 433-468 (in Russian). 
  28. MacLane, S. (1963). Homology, Springer, Berlin. Zbl0133.26502
  29. Martin, M. and Putinar, M. (1989). Lectures on Hyponormal Operators, Birkhäuser, Basel. Zbl0684.47018
  30. Putinar, M. (1983). Spectral theory and sheaf theory. I, in: Dilation Theory, Toeplitz Operators and Other Topics, Birkhäuser, Basel. Zbl0525.47010
  31. Putinar, M. (1985). Hyponormal operators are subscalar, J. Operator Theory 12, 385-395. Zbl0573.47016
  32. Putinar, M. (1986). Spectral theory and sheaf theory. II, Math. Z. 192, 473-490. Zbl0608.47011
  33. Putinar, M. (1990). Spectral theory and sheaf theory. IV, in: Proc. Sympos. Pure Math. 51, part 2, Amer. Math. Soc., 273-293. Zbl0778.47023
  34. Putinar, M. (1992). Quasi-similarity of tuples with Bishop's property (β), Integral Equations Operator Theory 15, 1040-1052. Zbl0773.47011
  35. Radjabalipour, M. (1978). Decomposable operators, Bull. Iranian Math. Soc. 9, 1-49. Zbl0696.47032
  36. Schwartz, L. (1955). Division par une fonction holomorphe sur une variété analytique complexe, Summa Brasil. Math. 3, 181-209. 
  37. Sz.-Nagy, B. and Foiaş, C. (1967). Analyse harmonique des opérateurs de l'espace de Hilbert, Akad. Kiadó, Budapest. Zbl0157.43201
  38. Taylor, J. L. (1970). A joint spectrum for several commuting operators, J. Funct. Anal. 6, 172-191. Zbl0233.47024
  39. Taylor, J. L. (1972a). Homology and cohomology for topological algebras, Adv. in Math. 9, 147-182. Zbl0271.46040
  40. Taylor, J. L. (1972b). A general framework for a multioperator functional calculus, Adv. in Math. 9, 184-252. 
  41. Vasilescu, F. H. (1982). Analytic Functional Calculus and Spectral Decompositions, Reidel, Dordrecht. Zbl0495.47013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.