Page 1 Next

Displaying 1 – 20 of 72

Showing per page

A commutant lifting theorem on analytic polyhedra

Calin Ambrozie, Jörg Eschmeier (2005)

Banach Center Publications

In this note a commutant lifting theorem for vector-valued functional Hilbert spaces over generalized analytic polyhedra in ℂⁿ is proved. Let T be the compression of the multiplication tuple M z to a *-invariant closed subspace of the underlying functional Hilbert space. Our main result characterizes those operators in the commutant of T which possess a lifting to a multiplier with Schur class symbol. As an application we obtain interpolation results of Nevanlinna-Pick and Carathéodory-Fejér type...

A natural localization of Hardy spaces in several complex variables

Mihai Putinar, Roland Wolff (1997)

Annales Polonici Mathematici

Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in n . The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop’s property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.

An inequality for spherical Cauchy dual tuples

Sameer Chavan (2013)

Colloquium Mathematicae

Let T be a spherical 2-expansive m-tuple and let T denote its spherical Cauchy dual. If T is commuting then the inequality | β | = k ( β ! ) - 1 ( T ) β ( T ) * β ( k + m - 1 k ) | β | = k ( β ! ) - 1 ( T ) * β ( T ) β holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.

Analytic joint spectral radius in a solvable Lie algebra of operators

Daniel Beltiţă (2001)

Studia Mathematica

We introduce the concept of analytic spectral radius for a family of operators indexed by some finite measure space. This spectral radius is compared with the algebraic and geometric spectral radii when the operators belong to some finite-dimensional solvable Lie algebra. We describe several situations when the three spectral radii coincide. These results extend well known facts concerning commuting n-tuples of operators.

Ascent and descent for sets of operators

Derek Kitson (2009)

Studia Mathematica

We extend the notion of ascent and descent for an operator acting on a vector space to sets of operators. If the ascent and descent of a set are both finite then they must be equal and give rise to a canonical decomposition of the space. Algebras of operators, unions of sets and closures of sets are treated. As an application we construct a Browder joint spectrum for commuting tuples of bounded operators which is compact-valued and has the projection property.

Banach-valued axiomatic spectra

S. Seán, Robin E. Harte (2006)

Studia Mathematica

Using axiomatic joint spectra we obtain a functional calculus which extends our previous Gelfand-Waelbroeck type results to include a Banach-valued Taylor-Waelbroeck spectrum.

Commutativity of compact selfadjoint operators

G. Greiner, W. Ricker (1995)

Studia Mathematica

The relationship between the joint spectrum γ(A) of an n-tuple A = ( A 1 , . . . , A n ) of selfadjoint operators and the support of the corresponding Weyl calculus T(A) : f ↦ f(A) is discussed. It is shown that one always has γ(A) ⊂ supp (T(A)). Moreover, when the operators are compact, equality occurs if and only if the operators A j mutually commute. In the non-commuting case the equality fails badly: While γ(A) is countable, supp(T(A)) has to be an uncountable set. An example is given showing that, for non-compact operators,...

Commuting Nonselfadjoint Operators and their Characteristic Operator-Functions

Kirchev, K., Borisova, G. (1997)

Serdica Mathematical Journal

* Partially supported by Grant MM-428/94 of MESC.In this paper we present some generalizations of results of M. S. Livšic [4,6], concerning regular colligations (A1, A2, H, Φ, E, σ1, σ2, γ, ˜γ) (σ1 > 0) of a pair of commuting nonselfadjoint operators A1, A2 with finite dimensional imaginary parts, their complete characteristic functions and a class Ω(σ1, σ2) of operator-functions W(x1, x2, z): E → E in the case of an inner function W(1, 0, z) of the class Ω(σ1). ...

Complete Pick positivity and unitary invariance

Angshuman Bhattacharya, Tirthankar Bhattacharyya (2010)

Studia Mathematica

The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foiaş. Just as a contraction is related to the Szegö kernel k S ( z , w ) = ( 1 - z w ̅ ) - 1 for |z|,|w| < 1, by means of ( 1 / k S ) ( T , T * ) 0 , we consider an arbitrary open connected domain Ω in ℂⁿ, a complete Pick kernel k on Ω and a tuple T = (T₁, ..., Tₙ) of commuting bounded operators on a complex separable Hilbert space ℋ such that (1/k)(T,T*) ≥ 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful...

Completely monotone functions of finite order and Agler's conditions

Sameer Chavan, V. M. Sholapurkar (2015)

Studia Mathematica

Motivated by some structural properties of Drury-Arveson d-shift, we investigate a class of functions consisting of polynomials and completely monotone functions defined on the semi-group ℕ of non-negative integers, and its operator-theoretic counterpart which we refer to as the class of completely hypercontractive tuples of finite order. We obtain a Lévy-Khinchin type integral representation for the spherical generating tuples associated with such operator tuples and discuss its applications.

Conditions equivalent to C* independence

Shuilin Jin, Li Xu, Qinghua Jiang, Li Li (2012)

Studia Mathematica

Let and be mutually commuting unital C* subalgebras of (). It is shown that and are C* independent if and only if for all natural numbers n, m, for all n-tuples A = (A₁, ..., Aₙ) of doubly commuting nonzero operators of and m-tuples B = (B₁, ..., Bₘ) of doubly commuting nonzero operators of , S p ( A , B ) = S p ( A ) × S p ( B ) , where Sp denotes the joint Taylor spectrum.

Currently displaying 1 – 20 of 72

Page 1 Next