Invariant Subspaces and Spectral Conditions on Operator Semigroups

Heydar Radjavi

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 287-296
  • ISSN: 0137-6934

How to cite

top

Radjavi, Heydar. "Invariant Subspaces and Spectral Conditions on Operator Semigroups." Banach Center Publications 38.1 (1997): 287-296. <http://eudml.org/doc/208636>.

@article{Radjavi1997,
author = {Radjavi, Heydar},
journal = {Banach Center Publications},
keywords = {reducible; triangularizable; spectral radius; common invariant subspaces; permutability; semigroups of operators},
language = {eng},
number = {1},
pages = {287-296},
title = {Invariant Subspaces and Spectral Conditions on Operator Semigroups},
url = {http://eudml.org/doc/208636},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Radjavi, Heydar
TI - Invariant Subspaces and Spectral Conditions on Operator Semigroups
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 287
EP - 296
LA - eng
KW - reducible; triangularizable; spectral radius; common invariant subspaces; permutability; semigroups of operators
UR - http://eudml.org/doc/208636
ER -

References

top
  1. [1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979. Zbl0409.46054
  2. [2] M. D. Choi, E. Nordgren, H. Radjavi, P. Rosenthal and Y. Zhong, Triangularizing semigroups of quasinilpotent operators with nonnegative entries, Indiana Univ. Math. J. 42 (1993), 15-25. Zbl0818.47035
  3. [3] P. Fillmore, G. MacDonald, M. Radjabalipour, and H. Radjavi, Towards a classification of maximal unicellular bands, Semigroup Forum 49 (1994), 195-215. Zbl0811.20061
  4. [4] N. Jacobson, Lectures in Abstract Algebra II: Linear Algebra, Van Nostrand, Princeton, 1953. 
  5. [5] D. Hadwin, Radjavi's trace condition for triangularizability, J. Algebra 109 (1987), 184-192. Zbl0626.47019
  6. [6] D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, A nil algebra of bounded operators on Hilbert space with semisimple norm closure, Integral Equations Operator Theory 9 (1986), 739-743. Zbl0631.47034
  7. [7] D. Hadwin, On simultaneous triangularization of collections of operators, Houston J. Math. 17 (1991), 581-602. Zbl0784.47032
  8. [8] I. Kaplansky, The Engel-Kolchin theorem revisited, in: Contributions to Algebra, H. Bass, P. J. Cassidy, and J. Kovacik (eds.), Academic Press, New York, 1977, 233-237. 
  9. [9] A. Katavolos and H. Radjavi, Simultaneous triangularization of operators on a Banach space, J. London Math. Soc. (2) 41 (1990), 547-554. Zbl0665.47016
  10. [10] L. Lambrou, W. Longstaff and H. Radjavi, Spectral conditions and reducibility of operator semigroups, Indiana Univ. Math. J. 41 (1992), 449-464. Zbl0766.47010
  11. [11] J. Levitzki, Über nilpotente Unterringe, Math. Ann. 105 (1931), 620-627. 
  12. [12] V. I. Lomonosov, Invariant subspaces for the family of operators commuting with compact operators, Funktsional. Anal. i Prilozhen. 7 (3) (1973), 55-56 (in Russian). 
  13. [13] W. Longstaff and H. Radjavi, On permutability and submultiplicativity of spectral radius, Canad. J. Math. 47 (1995), 1007-1022. Zbl0844.47003
  14. [14] E. Nordgren, H. Radjavi and P. Rosenthal, Triangularizing semigroups of compact operators, Indiana Univ. Math. J. 33 (1984), 271-275. Zbl0579.47041
  15. [15] M. Omladič and H. Radjavi, Irreducible semigroups with multiplicative spectral radius, Linear Algebra Appl. 251 (1997), 59-72. Zbl0937.47043
  16. [16] H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386. Zbl0577.47018
  17. [17] H. Radjavi, The Engel-Jacobson theorem revisited, J. Algebra 111 (1987), 427-430. Zbl0645.15010
  18. [18] H. Radjavi, On the reduction and triangularization of semigroups of operators, J. Operator Theory 13 (1985), 63-71. Zbl0581.47026
  19. [19] H. Radjavi, On reducibility of semigroups of compact operators, Indiana Univ. Math. J. 39 (1990), 499-515. Zbl0770.47010
  20. [20] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, Berlin, 1973. Zbl0269.47003
  21. [21] H. Radjavi and P. Rosenthal, The invariant subspace problem, Math. Intelligencer 4 (1982), 33-37. Zbl0496.47008
  22. [22] J. Ringrose, Super diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367-384. Zbl0102.10301
  23. [23] V. S. Shul'man, On invariant subspaces of Volterra operators, Funktsional. Anal. i Prilozhen. 18 (2) (1984), 85-86 (in Russian). 
  24. [24] V. S. Shul'man, Invariant subspaces and spectral mapping theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 313-325. 
  25. [25] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN, Warszawa, 1982, 579-595. 
  26. [26] Y. Zhong, Functional positivity and invariant subspaces of semigroups of operators, Houston J. Math. 19 (1993), 239-262. Zbl0798.47030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.