Page 1 Next

Displaying 1 – 20 of 99

Showing per page

A review of selected topics in majorization theory

Marek Niezgoda (2013)

Banach Center Publications

In this expository paper, some recent developments in majorization theory are reviewed. Selected topics on group majorizations, group-induced cone orderings, Eaton triples, normal decomposition systems and similarly separable vectors are discussed. Special attention is devoted to majorization inequalities. A unified approach is presented for proving majorization relations for eigenvalues and singular values of matrices. Some methods based on the Chebyshev functional and similarly separable vectors...

Block matrix approximation via entropy loss function

Malwina Janiszewska, Augustyn Markiewicz, Monika Mokrzycka (2020)

Applications of Mathematics

The aim of the paper is to present a procedure for the approximation of a symmetric positive definite matrix by symmetric block partitioned matrices with structured off-diagonal blocks. The entropy loss function is chosen as approximation criterion. This procedure is applied in a simulation study of the statistical problem of covariance structure identification.

Dissident maps on the seven-dimensional Euclidean space

Ernst Dieterich, Lars Lindberg (2003)

Colloquium Mathematicae

Our article contributes to the classification of dissident maps on ℝ ⁷, which in turn contributes to the classification of 8-dimensional real division algebras. We study two large classes of dissident maps on ℝ ⁷. The first class is formed by all composed dissident maps, obtained from a vector product on ℝ ⁷ by composition with a definite endomorphism. The second class is formed by all doubled dissident maps, obtained as the purely imaginary parts of the structures of those 8-dimensional...

Currently displaying 1 – 20 of 99

Page 1 Next