On the differences of the consecutive powers of Banach algebra elements

Helmuth Rönnefarth

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 297-314
  • ISSN: 0137-6934

Abstract

top
Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence x n ( x - 1 ) n for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of x n n and 1 / n k = 0 n - 1 x k n .

How to cite

top

Rönnefarth, Helmuth. "On the differences of the consecutive powers of Banach algebra elements." Banach Center Publications 38.1 (1997): 297-314. <http://eudml.org/doc/208637>.

@article{Rönnefarth1997,
abstract = {Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence $\{x^\{n\}(x-1)\}_\{n ∈ ℕ\}$ for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of $\{x^\{n\}\}_\{n ∈ ℕ\}$ and $\{1/n ∑_\{k=0\}^\{n-1\} x^\{k\}\}_\{n ∈ ℕ\}$.},
author = {Rönnefarth, Helmuth},
journal = {Banach Center Publications},
keywords = {Banach algebra; boundedness; relative compactness; resolvent; peripheral spectrum},
language = {eng},
number = {1},
pages = {297-314},
title = {On the differences of the consecutive powers of Banach algebra elements},
url = {http://eudml.org/doc/208637},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Rönnefarth, Helmuth
TI - On the differences of the consecutive powers of Banach algebra elements
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 297
EP - 314
AB - Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence ${x^{n}(x-1)}_{n ∈ ℕ}$ for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of ${x^{n}}_{n ∈ ℕ}$ and ${1/n ∑_{k=0}^{n-1} x^{k}}_{n ∈ ℕ}$.
LA - eng
KW - Banach algebra; boundedness; relative compactness; resolvent; peripheral spectrum
UR - http://eudml.org/doc/208637
ER -

References

top
  1. [1] G. R. Allan and T. J. Ransford, Power dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. Zbl0705.46021
  2. [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
  3. [3] L. Burlando, Uniformly p -ergodic operators and poles of the resolvent, Semester ’Linear Operators’, Banach Center, Warszawa, 1994. 
  4. [4] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. Zbl0558.46001
  5. [5] J. Esterle, Quasimultipliers, representations of H , and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162. 
  6. [6] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. Zbl67.0407.02
  7. [7] H. Heuser, Funktionalanalysis, 2. Aufl., Teubner, Stuttgart, 1986. 
  8. [8] S. Huang, Stability properties characterizing the spectra of operators on Banach spaces, J. Funct. Anal. 132 (1995), 361-382. Zbl0843.43008
  9. [9] B. Huppert, Angewandte Lineare Algebra, de Gruyter, Berlin, 1990. 
  10. [10] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. (3) 18 (1968), 428-438. Zbl0162.18601
  11. [11] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
  12. [12] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473. Zbl0265.46049
  13. [13] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen, die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181. Zbl0109.34702
  14. [14] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. Zbl0252.47004
  15. [15] M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158. 
  16. [16] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993. Zbl0846.47008
  17. [17] J. I. Nieto, On the peripheral spectrum, Manuscripta Math. 32 (1980), 137-148. Zbl0455.47021
  18. [18] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, 1993. 
  19. [19] J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106. Zbl0724.15021
  20. [20] A. Święch, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1990), 266. Zbl0725.47003
  21. [21] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. Zbl0501.46003
  22. [22] Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024. Zbl0781.47003
  23. [23] H. D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. Zbl0555.47008
  24. [24] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984. Zbl0531.40008
  25. [25] T. Yoshimoto, On the speed of convergence in the ( C , α ) uniform ergodic theorem for quasi-compact operators, J. Math. Anal. Appl. 176 (1993), 413-422. Zbl0793.47014
  26. [26] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385. Zbl0822.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.