A generalization of the uniform ergodic theorem to poles of arbitrary order
Studia Mathematica (1997)
- Volume: 122, Issue: 1, page 75-98
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBurlando, Laura. "A generalization of the uniform ergodic theorem to poles of arbitrary order." Studia Mathematica 122.1 (1997): 75-98. <http://eudml.org/doc/216362>.
@article{Burlando1997,
abstract = {},
author = {Burlando, Laura},
journal = {Studia Mathematica},
keywords = {uniform ergodic theorem},
language = {eng},
number = {1},
pages = {75-98},
title = {A generalization of the uniform ergodic theorem to poles of arbitrary order},
url = {http://eudml.org/doc/216362},
volume = {122},
year = {1997},
}
TY - JOUR
AU - Burlando, Laura
TI - A generalization of the uniform ergodic theorem to poles of arbitrary order
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 1
SP - 75
EP - 98
AB -
LA - eng
KW - uniform ergodic theorem
UR - http://eudml.org/doc/216362
ER -
References
top- [B] L. Burlando, Uniformly p-ergodic operators and poles of the resolvent, lecture given during the Semester "Linear Operators", Warszawa, 1994.
- [D1] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
- [D2] N. Dunford, Spectral theory, Bull. Amer. Math. Soc. 49 (1943), 637-651. Zbl0063.01184
- [H] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967.
- [K] T. Kato, Perturbation theory for nullity. deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. Zbl0090.09003
- [LM1] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135. Zbl0812.47031
- [LM2] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. Zbl0849.47008
- [La] D. C. Lay, Spectral analysis using ascent. descent. nullity and defect, Math. Ann. 184 (1970), 197-214. Zbl0177.17102
- [Li] M. Lin, On the uniform ergodic theorem, Proc. Amer Math. Soc. 43 (1974), 337-340. Zbl0252.47004
- [MO] M. Mbekhta et O. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525-543. Zbl0822.47003
- [MZ] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
- [R1] H. C. Rönnefarth, On the differences of the consecutive powers of Banach algebra elements, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., Warszawa, to appear.
- [R2] H. C. Rönnefarth, On properties of the powers of a bounded linear operator and their characterization by its spectrum and resolvent, thesis, Berlin, 1996.
- [R3] H. C. Rönnefarth, A unified approach to some recent results in the uniform ergodic theory, preprint.
- [TL] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980.
- [W] H.-D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. Zbl0555.47008
- [Z] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385. Zbl0822.47005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.