A generalization of the uniform ergodic theorem to poles of arbitrary order

Laura Burlando

Studia Mathematica (1997)

  • Volume: 122, Issue: 1, page 75-98
  • ISSN: 0039-3223

How to cite

top

Burlando, Laura. "A generalization of the uniform ergodic theorem to poles of arbitrary order." Studia Mathematica 122.1 (1997): 75-98. <http://eudml.org/doc/216362>.

@article{Burlando1997,
abstract = {},
author = {Burlando, Laura},
journal = {Studia Mathematica},
keywords = {uniform ergodic theorem},
language = {eng},
number = {1},
pages = {75-98},
title = {A generalization of the uniform ergodic theorem to poles of arbitrary order},
url = {http://eudml.org/doc/216362},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Burlando, Laura
TI - A generalization of the uniform ergodic theorem to poles of arbitrary order
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 1
SP - 75
EP - 98
AB -
LA - eng
KW - uniform ergodic theorem
UR - http://eudml.org/doc/216362
ER -

References

top
  1. [B] L. Burlando, Uniformly p-ergodic operators and poles of the resolvent, lecture given during the Semester "Linear Operators", Warszawa, 1994. 
  2. [D1] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
  3. [D2] N. Dunford, Spectral theory, Bull. Amer. Math. Soc. 49 (1943), 637-651. Zbl0063.01184
  4. [H] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967. 
  5. [K] T. Kato, Perturbation theory for nullity. deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. Zbl0090.09003
  6. [LM1] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135. Zbl0812.47031
  7. [LM2] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. Zbl0849.47008
  8. [La] D. C. Lay, Spectral analysis using ascent. descent. nullity and defect, Math. Ann. 184 (1970), 197-214. Zbl0177.17102
  9. [Li] M. Lin, On the uniform ergodic theorem, Proc. Amer Math. Soc. 43 (1974), 337-340. Zbl0252.47004
  10. [MO] M. Mbekhta et O. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525-543. Zbl0822.47003
  11. [MZ] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158. 
  12. [R1] H. C. Rönnefarth, On the differences of the consecutive powers of Banach algebra elements, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., Warszawa, to appear. 
  13. [R2] H. C. Rönnefarth, On properties of the powers of a bounded linear operator and their characterization by its spectrum and resolvent, thesis, Berlin, 1996. 
  14. [R3] H. C. Rönnefarth, A unified approach to some recent results in the uniform ergodic theory, preprint. 
  15. [TL] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980. 
  16. [W] H.-D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. Zbl0555.47008
  17. [Z] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385. Zbl0822.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.