The Gerschgorin discs under unitary similarity

Anna Zalewska-Mitura; Jaroslav Zemánek

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 427-441
  • ISSN: 0137-6934

Abstract

top
The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.

How to cite

top

Zalewska-Mitura, Anna, and Zemánek, Jaroslav. "The Gerschgorin discs under unitary similarity." Banach Center Publications 38.1 (1997): 427-441. <http://eudml.org/doc/208645>.

@article{Zalewska1997,
abstract = {The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.},
author = {Zalewska-Mitura, Anna, Zemánek, Jaroslav},
journal = {Banach Center Publications},
keywords = {Gerschgorin regions; unitary similarity; spectrum; singular values},
language = {eng},
number = {1},
pages = {427-441},
title = {The Gerschgorin discs under unitary similarity},
url = {http://eudml.org/doc/208645},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Zalewska-Mitura, Anna
AU - Zemánek, Jaroslav
TI - The Gerschgorin discs under unitary similarity
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 427
EP - 441
AB - The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.
LA - eng
KW - Gerschgorin regions; unitary similarity; spectrum; singular values
UR - http://eudml.org/doc/208645
ER -

References

top
  1. G. R. Allan and J. Zemánek [to appear], Invariant subspaces for pairs of projections, J. London Math. Soc. Zbl0939.47003
  2. H. Auerbach [1933], Sur le nombre de générateurs d'un groupe linéaire borné, C. R. Acad. Sci. Paris 197, 1385-1386. Zbl59.0434.02
  3. B. Aupetit [1991], A Primer on Spectral Theory, Springer, New York. 
  4. B. Aupetit, E. Makai, Jr. and J. Zemánek [1996], Strict convexity of the singular value sequences, Acta Sci. Math. (Szeged) 62, 517-521. Zbl0880.47012
  5. F. L. Bauer and C. T. Fike [1960], Norms and exclusion theorems, Numer. Math. 2, 137-141. Zbl0101.25503
  6. H. E. Bell [1965], Gershgorin's theorem and the zeros of polynomials, Amer. Math. Monthly 72, 292-295. Zbl0134.02003
  7. E. Bodewig [1956], Matrix Calculus, North-Holland, Amsterdam. Zbl0086.32501
  8. E. T. Browne [1928], The characteristic equation of a matrix, Bull. Amer. Math. Soc. 34, 363-368. Zbl54.0109.04
  9. E. T. Browne [1939], Limits to the characteristic roots of a matrix, Amer. Math. Monthly 46, 252-265. Zbl0021.09904
  10. E. T. Browne [1958], Introduction to the Theory of Determinants and Matrices, University of North Carolina Press, Chapel Hill, NC. Zbl0079.01201
  11. R. A. Brualdi and S. Mellendorf [1994], Regions in the complex plane containing the eigenvalues of a matrix, Amer. Math. Monthly 101, 975-985. Zbl0838.15010
  12. R. L. Causey [1958], Computing eigenvalues of non-Hermitian matrices by methods of Jacobi type, J. Soc. Indust. Appl. Math. 6, 172-181. Zbl0097.32701
  13. G. Dahlquist [1958], Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, dissertation, Uppsala. Published in Kungl. Tekn. Högsk. Hand. Stockholm, No. 130, 1959. 
  14. C. Davis [1955], Generators of the ring of bounded operators, Proc.Amer.Math.Soc.6, 970-972. Zbl0066.09801
  15. J.Dazord [1991], Sur une norme de matrices, C.R.Acad.Sci.ParisSér. I Math. 312, 597-600. Zbl0724.47006
  16. J. Dazord [1994], On the C-numerical range of a matrix, Linear Algebra Appl. 212/213, 21-29. Zbl0814.15020
  17. J. Dazord [1995a], Une propriété extremale de la diagonale d'une matrice, lecture notes, Luminy. 
  18. J. Dazord [1995b], Matrices (1-d), lecture notes, Luminy. 
  19. J. Dazord [1996], Trace norm and spatial radius of a matrix, lecture notes, Chemnitz. 
  20. R. Gabriel [1979], Matrizen mit maximaler Diagonale bei unitärer Similarität, J. Reine Angew. Math. 307/308, 31-52. Zbl0396.15010
  21. N. Gastinel [1960], Utilisation de matrices vérifiant une équation de degré 2 pour la transmutation de matrices, C. R. Acad. Sci. Paris 250, 1960-1961. Zbl0091.12002
  22. S. Gerschgorin [1931], Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR 7, 749-754. Zbl0003.00102
  23. Y. Gu [1994], The distribution of eigenvalues of a matrix, Acta Math. Appl. Sinica 17, 501-511 (in Chinese). 
  24. K. E. Gustafson and D. K. M. Rao [1997], Numerical Range, Springer, New York. 
  25. P. R. Halmos [1995], Linear Algebra Problem Book, Mathematical Association of America, Washington, DC. 
  26. T. Hawkins [1975], Cauchy and the spectral theory of matrices, Historia Math. 2, 1-29. Zbl0296.01014
  27. R. A. Horn and C. R. Johnson [1985], Matrix Analysis, Cambridge University Press, Cambridge. Zbl0576.15001
  28. R. A. Horn and C. R. Johnson [1991], Topics in Matrix Analysis, Cambridge University Press, Cambridge. Zbl0729.15001
  29. A. S. Householder [1964], The Theory of Matrices in Numerical Analysis, Blaisdell, New York. Zbl0161.12101
  30. T. J. Laffey [1981], Algebras generated by two idempotents, Linear Algebra Appl. 37, 45-53. Zbl0459.16010
  31. P. Lascaux et R. Théodor [1993], Analyse Numérique Matricielle Appliquée à l'Art de l'Ingénieur 1, Masson, Paris. Zbl0601.65017
  32. L. László [1991], Upper bounds for matrix diagonals, Linear and Multilinear Algebra 30, 283-301. Zbl0745.15011
  33. L. László [1996], Upper bounds for the best normal approximation, lecture notes, Chemnitz. 
  34. L. László [1997], Upper bounds for the best normal approximation, preprint. 
  35. S. L. Lee [1996], Best available bounds for departure from normality, SIAM J. Matrix Anal. Appl. 17, 984-991. Zbl0877.65024
  36. S. M. Lozinskiĭ [1958], Error estimate for numerical integration of ordinary differential equations I, Izv. Vyssh. Uchebn. Zaved. Mat., no. 5 (6), 52-90; errata, 1959, no. 5 (12), 222 (in Russian). Zbl0198.21202
  37. E. H. Luchnis and M. A. McLoughlin [1996], In memoriam: Olga Taussky-Todd, Notices Amer. Math. Soc. 43, 838-847. Zbl1044.01541
  38. G. Lumer [1961], Semi-inner-product spaces, Trans. Amer. Math. Soc. 100, 29-43. Zbl0102.32701
  39. C. C. MacDuffee [1946], The Theory of Matrices, Chelsea, New York. Zbl0007.19507
  40. M. Marcus and H. Minc [1964], A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston. Zbl0126.02404
  41. M. Marcus and M. Sandy [1985], Singular values and numerical radii, Linear and Multilinear Algebra 18, 337-353. Zbl0592.15009
  42. M. Marden [1966], Geometry of Polynomials, American Mathematical Society, Providence, RI. Zbl0162.37101
  43. L. Mirsky [1955], An Introduction to Linear Algebra, Clarendon Press, Oxford. Zbl0066.26305
  44. M. Newman [1980]. Geršgorin revisited, Linear Algebra Appl. 30, 247-249. Zbl0438.15011
  45. N. Nirschl and H. Schneider [1964], The Bauer fields of values of a matrix, Numer. Math. 6, 355-365. Zbl0126.32102
  46. N. Obreškov [1963], Zeros of Polynomials, Izdat. Bŭlgar. Akad. Nauk, Sofia (in Bulgarian). Zbl1248.33001
  47. W. V. Parker [1948], Sets of complex numbers associated with a matrix, Duke Math. J. 15, 711-715. Zbl0031.14803
  48. W. V. Parker [1951], Characteristic roots and field of values of a matrix, Bull. Amer. Math. Soc. 57, 103-108. Zbl0042.25101
  49. M. Parodi [1959], La Localisation des Valeurs Caractéristiques des Matrices et Ses Applications, Gauthier-Villars, Paris. Zbl0087.01602
  50. S. Prasanna [1981], The norm of a derivation and the Björck-Thomee-Istratescu theorem, Math. Japon. 26, 585-588. Zbl0475.47007
  51. V. V. Prasolov [1994], Problems and Theorems in Linear Algebra, American Mathematical Society, Providence, RI. Zbl0803.15001
  52. V. Pták et J. Zemánek [1976], Continuité lipschitzienne du spectre comme fonction d'un opérateur normal, Comment. Math. Univ. Carolin. 17, 507-512. Zbl0341.47019
  53. H. Radjavi and P. Rosenthal [1970], Matrices for operators and generators of B(H), J. London Math. Soc. (2) 2, 557-560. Zbl0197.10801
  54. A. G. Robertson [1974], A note on the unit ball in C*-algebras, Bull. London Math. Soc. 6, 333-335. Zbl0291.46042
  55. V. Scharnitzky [1996], Matrix Calculus, Műszaki Könyvkiadó, Budapest (in Hungarian). 
  56. I. Schur [1909], Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann. 66, 488-510. Zbl40.0396.03
  57. H. Shapiro [1991], A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl. 147, 101-167. Zbl0723.15007
  58. K. Skurzyński [1996], Elements of the theory of matrices, Gradient, no. 4, 216-234 (in Polish). 
  59. A. Smoktunowicz [1996], Remarks on inclusion theorems for normal matrices, lecture notes, Warszawa. 
  60. J. G. Stampfli and J. P. Williams [1968], Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20, 417-424. Zbl0175.43902
  61. P. Stein [1952], A note on bounds of multiple characteristic roots of a matrix, J. Research Nat. Bur. Standards 48, 59-60. Zbl0049.01002
  62. E. L. Stolov [1979], The Hausdorff set of a matrix, Izv. Vyssh. Uchebn. Zaved. Mat., no. 10, 98-100 (in Russian). Zbl0428.15011
  63. B.-S. Tam [1986], A simple proof of the Goldberg-Straus theorem on numerical radii, Glasgow Math. J. 28, 139-141. Zbl0605.15019
  64. O. Taussky [1948], Bounds for characteristic roots of matrices, Duke Math. J. 15, 1043-1044. Zbl0031.24405
  65. O. Taussky [1949], A recurring theorem on determinants, Amer. Math. Monthly 56, 672-676. Zbl0036.01301
  66. O. Taussky [1962], Eigenvalues of finite matrices: Some topics concerning bounds for eigenvalues of finite matrices, in: Survey of Numerical Analysis (ed. J. Todd), McGraw-Hill, New York, 279-297. 
  67. R. C. Thompson [1987], The matrix numerical range, Linear and Multilinear Algebra 21, 321-323. Zbl0637.15019
  68. N.-K. Tsing [1983], Diameter and minimal width of the numerical range, Linear and Multilinear Algebra 14, 179-185. Zbl0533.15017
  69. H. W. Turnbull and A. C. Aitken [1932], An Introduction to the Theory of Canonical Matrices, Blackie, London. Zbl0005.19303
  70. R. S. Varga [1962], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ. 
  71. R. S. Varga [1965], Minimal Gerschgorin sets, Pacific J. Math. 15, 719-729. Zbl0168.02904
  72. T. Yoshino [1993], Introduction to Operator Theory, Longman, Harlow. 
  73. A. Zalewska-Mitura [1997], Localization of the Spectrum of Matrices by Means of Unitary Similarities, dissertation, Institute of Mathematics of the Polish Academy of Sciences, Warszawa (in Polish). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.