The Gerschgorin discs under unitary similarity
Anna Zalewska-Mitura; Jaroslav Zemánek
Banach Center Publications (1997)
- Volume: 38, Issue: 1, page 427-441
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topZalewska-Mitura, Anna, and Zemánek, Jaroslav. "The Gerschgorin discs under unitary similarity." Banach Center Publications 38.1 (1997): 427-441. <http://eudml.org/doc/208645>.
@article{Zalewska1997,
abstract = {The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.},
author = {Zalewska-Mitura, Anna, Zemánek, Jaroslav},
journal = {Banach Center Publications},
keywords = {Gerschgorin regions; unitary similarity; spectrum; singular values},
language = {eng},
number = {1},
pages = {427-441},
title = {The Gerschgorin discs under unitary similarity},
url = {http://eudml.org/doc/208645},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Zalewska-Mitura, Anna
AU - Zemánek, Jaroslav
TI - The Gerschgorin discs under unitary similarity
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 427
EP - 441
AB - The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.
LA - eng
KW - Gerschgorin regions; unitary similarity; spectrum; singular values
UR - http://eudml.org/doc/208645
ER -
References
top- G. R. Allan and J. Zemánek [to appear], Invariant subspaces for pairs of projections, J. London Math. Soc. Zbl0939.47003
- H. Auerbach [1933], Sur le nombre de générateurs d'un groupe linéaire borné, C. R. Acad. Sci. Paris 197, 1385-1386. Zbl59.0434.02
- B. Aupetit [1991], A Primer on Spectral Theory, Springer, New York.
- B. Aupetit, E. Makai, Jr. and J. Zemánek [1996], Strict convexity of the singular value sequences, Acta Sci. Math. (Szeged) 62, 517-521. Zbl0880.47012
- F. L. Bauer and C. T. Fike [1960], Norms and exclusion theorems, Numer. Math. 2, 137-141. Zbl0101.25503
- H. E. Bell [1965], Gershgorin's theorem and the zeros of polynomials, Amer. Math. Monthly 72, 292-295. Zbl0134.02003
- E. Bodewig [1956], Matrix Calculus, North-Holland, Amsterdam. Zbl0086.32501
- E. T. Browne [1928], The characteristic equation of a matrix, Bull. Amer. Math. Soc. 34, 363-368. Zbl54.0109.04
- E. T. Browne [1939], Limits to the characteristic roots of a matrix, Amer. Math. Monthly 46, 252-265. Zbl0021.09904
- E. T. Browne [1958], Introduction to the Theory of Determinants and Matrices, University of North Carolina Press, Chapel Hill, NC. Zbl0079.01201
- R. A. Brualdi and S. Mellendorf [1994], Regions in the complex plane containing the eigenvalues of a matrix, Amer. Math. Monthly 101, 975-985. Zbl0838.15010
- R. L. Causey [1958], Computing eigenvalues of non-Hermitian matrices by methods of Jacobi type, J. Soc. Indust. Appl. Math. 6, 172-181. Zbl0097.32701
- G. Dahlquist [1958], Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, dissertation, Uppsala. Published in Kungl. Tekn. Högsk. Hand. Stockholm, No. 130, 1959.
- C. Davis [1955], Generators of the ring of bounded operators, Proc.Amer.Math.Soc.6, 970-972. Zbl0066.09801
- J.Dazord [1991], Sur une norme de matrices, C.R.Acad.Sci.ParisSér. I Math. 312, 597-600. Zbl0724.47006
- J. Dazord [1994], On the C-numerical range of a matrix, Linear Algebra Appl. 212/213, 21-29. Zbl0814.15020
- J. Dazord [1995a], Une propriété extremale de la diagonale d'une matrice, lecture notes, Luminy.
- J. Dazord [1995b], Matrices (1-d), lecture notes, Luminy.
- J. Dazord [1996], Trace norm and spatial radius of a matrix, lecture notes, Chemnitz.
- R. Gabriel [1979], Matrizen mit maximaler Diagonale bei unitärer Similarität, J. Reine Angew. Math. 307/308, 31-52. Zbl0396.15010
- N. Gastinel [1960], Utilisation de matrices vérifiant une équation de degré 2 pour la transmutation de matrices, C. R. Acad. Sci. Paris 250, 1960-1961. Zbl0091.12002
- S. Gerschgorin [1931], Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR 7, 749-754. Zbl0003.00102
- Y. Gu [1994], The distribution of eigenvalues of a matrix, Acta Math. Appl. Sinica 17, 501-511 (in Chinese).
- K. E. Gustafson and D. K. M. Rao [1997], Numerical Range, Springer, New York.
- P. R. Halmos [1995], Linear Algebra Problem Book, Mathematical Association of America, Washington, DC.
- T. Hawkins [1975], Cauchy and the spectral theory of matrices, Historia Math. 2, 1-29. Zbl0296.01014
- R. A. Horn and C. R. Johnson [1985], Matrix Analysis, Cambridge University Press, Cambridge. Zbl0576.15001
- R. A. Horn and C. R. Johnson [1991], Topics in Matrix Analysis, Cambridge University Press, Cambridge. Zbl0729.15001
- A. S. Householder [1964], The Theory of Matrices in Numerical Analysis, Blaisdell, New York. Zbl0161.12101
- T. J. Laffey [1981], Algebras generated by two idempotents, Linear Algebra Appl. 37, 45-53. Zbl0459.16010
- P. Lascaux et R. Théodor [1993], Analyse Numérique Matricielle Appliquée à l'Art de l'Ingénieur 1, Masson, Paris. Zbl0601.65017
- L. László [1991], Upper bounds for matrix diagonals, Linear and Multilinear Algebra 30, 283-301. Zbl0745.15011
- L. László [1996], Upper bounds for the best normal approximation, lecture notes, Chemnitz.
- L. László [1997], Upper bounds for the best normal approximation, preprint.
- S. L. Lee [1996], Best available bounds for departure from normality, SIAM J. Matrix Anal. Appl. 17, 984-991. Zbl0877.65024
- S. M. Lozinskiĭ [1958], Error estimate for numerical integration of ordinary differential equations I, Izv. Vyssh. Uchebn. Zaved. Mat., no. 5 (6), 52-90; errata, 1959, no. 5 (12), 222 (in Russian). Zbl0198.21202
- E. H. Luchnis and M. A. McLoughlin [1996], In memoriam: Olga Taussky-Todd, Notices Amer. Math. Soc. 43, 838-847. Zbl1044.01541
- G. Lumer [1961], Semi-inner-product spaces, Trans. Amer. Math. Soc. 100, 29-43. Zbl0102.32701
- C. C. MacDuffee [1946], The Theory of Matrices, Chelsea, New York. Zbl0007.19507
- M. Marcus and H. Minc [1964], A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston. Zbl0126.02404
- M. Marcus and M. Sandy [1985], Singular values and numerical radii, Linear and Multilinear Algebra 18, 337-353. Zbl0592.15009
- M. Marden [1966], Geometry of Polynomials, American Mathematical Society, Providence, RI. Zbl0162.37101
- L. Mirsky [1955], An Introduction to Linear Algebra, Clarendon Press, Oxford. Zbl0066.26305
- M. Newman [1980]. Geršgorin revisited, Linear Algebra Appl. 30, 247-249. Zbl0438.15011
- N. Nirschl and H. Schneider [1964], The Bauer fields of values of a matrix, Numer. Math. 6, 355-365. Zbl0126.32102
- N. Obreškov [1963], Zeros of Polynomials, Izdat. Bŭlgar. Akad. Nauk, Sofia (in Bulgarian). Zbl1248.33001
- W. V. Parker [1948], Sets of complex numbers associated with a matrix, Duke Math. J. 15, 711-715. Zbl0031.14803
- W. V. Parker [1951], Characteristic roots and field of values of a matrix, Bull. Amer. Math. Soc. 57, 103-108. Zbl0042.25101
- M. Parodi [1959], La Localisation des Valeurs Caractéristiques des Matrices et Ses Applications, Gauthier-Villars, Paris. Zbl0087.01602
- S. Prasanna [1981], The norm of a derivation and the Björck-Thomee-Istratescu theorem, Math. Japon. 26, 585-588. Zbl0475.47007
- V. V. Prasolov [1994], Problems and Theorems in Linear Algebra, American Mathematical Society, Providence, RI. Zbl0803.15001
- V. Pták et J. Zemánek [1976], Continuité lipschitzienne du spectre comme fonction d'un opérateur normal, Comment. Math. Univ. Carolin. 17, 507-512. Zbl0341.47019
- H. Radjavi and P. Rosenthal [1970], Matrices for operators and generators of B(H), J. London Math. Soc. (2) 2, 557-560. Zbl0197.10801
- A. G. Robertson [1974], A note on the unit ball in C*-algebras, Bull. London Math. Soc. 6, 333-335. Zbl0291.46042
- V. Scharnitzky [1996], Matrix Calculus, Műszaki Könyvkiadó, Budapest (in Hungarian).
- I. Schur [1909], Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann. 66, 488-510. Zbl40.0396.03
- H. Shapiro [1991], A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl. 147, 101-167. Zbl0723.15007
- K. Skurzyński [1996], Elements of the theory of matrices, Gradient, no. 4, 216-234 (in Polish).
- A. Smoktunowicz [1996], Remarks on inclusion theorems for normal matrices, lecture notes, Warszawa.
- J. G. Stampfli and J. P. Williams [1968], Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20, 417-424. Zbl0175.43902
- P. Stein [1952], A note on bounds of multiple characteristic roots of a matrix, J. Research Nat. Bur. Standards 48, 59-60. Zbl0049.01002
- E. L. Stolov [1979], The Hausdorff set of a matrix, Izv. Vyssh. Uchebn. Zaved. Mat., no. 10, 98-100 (in Russian). Zbl0428.15011
- B.-S. Tam [1986], A simple proof of the Goldberg-Straus theorem on numerical radii, Glasgow Math. J. 28, 139-141. Zbl0605.15019
- O. Taussky [1948], Bounds for characteristic roots of matrices, Duke Math. J. 15, 1043-1044. Zbl0031.24405
- O. Taussky [1949], A recurring theorem on determinants, Amer. Math. Monthly 56, 672-676. Zbl0036.01301
- O. Taussky [1962], Eigenvalues of finite matrices: Some topics concerning bounds for eigenvalues of finite matrices, in: Survey of Numerical Analysis (ed. J. Todd), McGraw-Hill, New York, 279-297.
- R. C. Thompson [1987], The matrix numerical range, Linear and Multilinear Algebra 21, 321-323. Zbl0637.15019
- N.-K. Tsing [1983], Diameter and minimal width of the numerical range, Linear and Multilinear Algebra 14, 179-185. Zbl0533.15017
- H. W. Turnbull and A. C. Aitken [1932], An Introduction to the Theory of Canonical Matrices, Blackie, London. Zbl0005.19303
- R. S. Varga [1962], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.
- R. S. Varga [1965], Minimal Gerschgorin sets, Pacific J. Math. 15, 719-729. Zbl0168.02904
- T. Yoshino [1993], Introduction to Operator Theory, Longman, Harlow.
- A. Zalewska-Mitura [1997], Localization of the Spectrum of Matrices by Means of Unitary Similarities, dissertation, Institute of Mathematics of the Polish Academy of Sciences, Warszawa (in Polish).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.