Lipschitz continuity of spectrum as function of a normal operator

Vlastimil Pták; Jaroslav Zemánek

Commentationes Mathematicae Universitatis Carolinae (1976)

  • Volume: 017, Issue: 3, page 507-512
  • ISSN: 0010-2628

How to cite

top

Pták, Vlastimil, and Zemánek, Jaroslav. "Continuite lipschitzienne du spectre comme fonction d'un opérateur normal." Commentationes Mathematicae Universitatis Carolinae 017.3 (1976): 507-512. <http://eudml.org/doc/16770>.

@article{Pták1976,
author = {Pták, Vlastimil, Zemánek, Jaroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {fre},
number = {3},
pages = {507-512},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Continuite lipschitzienne du spectre comme fonction d'un opérateur normal},
url = {http://eudml.org/doc/16770},
volume = {017},
year = {1976},
}

TY - JOUR
AU - Pták, Vlastimil
AU - Zemánek, Jaroslav
TI - Continuite lipschitzienne du spectre comme fonction d'un opérateur normal
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1976
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 017
IS - 3
SP - 507
EP - 512
LA - fre
UR - http://eudml.org/doc/16770
ER -

References

top
  1. B. AUPETIT, Continuité et uniforme continuité du spectre dans les algèbres de Banach, à paraitre. Zbl0372.46044
  2. F. L. BAUER C. T. FIKE, Norms and exclusion theorems, Numer. Math. 2 (1960), 137-141. (1960) MR0118729
  3. N. BOURBAKI, Théories spectrales, Paris 1967. (1967) Zbl0152.32603
  4. J. B. CONWAY, On the Calkin algebra and the covering homotopy property, Trans. Amer. Math. Soc. 211 (1975), 135-142. (1975) Zbl0281.46055MR0399875
  5. M. FIEDLER, Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices, Czech. Math. J. 24 (1974), 392-402. (1974) Zbl0345.15013MR0347858
  6. A. J. HOFFMAN H. W. WIELANDT, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37-39. (1953) MR0052379
  7. V. I. ISTRĂTESCU, Introducere în teoria operatorilor liniari, Bucureşti 1975. (1975) 
  8. J. JANAS, Note on the spectrum and joint spectrum of hyponormal and Toeplitz operators, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 957-961. (1975) Zbl0317.47015MR0440401
  9. T. KATO, Perturbation theory for linear operators, New York 1S66. Zbl0836.47009MR0203473
  10. J. D. NEWBURGH, The variation of spectra, Duke Math. J. 19 (1951), 165-176. (1951) Zbl0042.12302MR0051441
  11. V. PTÁK, An inclusion theorem for normal operators, Acta Sci. Math. Szeged, sous presse. MR0410447
  12. J. STOER R. BULIRSCH, Einführung in die Numerische Mathematik II, Berlin 1911. (1911) 
  13. J. ZEMÁNEK, Spectral radius characterizations of commutativity in Banach algebras, Studia Math., sous presse. MR0461139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.