Singular Moment Maps and Quaternionic Geometry

Andrew Swann

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 143-153
  • ISSN: 0137-6934

How to cite

top

Swann, Andrew. "Singular Moment Maps and Quaternionic Geometry." Banach Center Publications 39.1 (1997): 143-153. <http://eudml.org/doc/208657>.

@article{Swann1997,
author = {Swann, Andrew},
journal = {Banach Center Publications},
keywords = {moment map; symplectic quotient; quaternionic Kähler manifold; hyper-Kähler manifold},
language = {eng},
number = {1},
pages = {143-153},
title = {Singular Moment Maps and Quaternionic Geometry},
url = {http://eudml.org/doc/208657},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Swann, Andrew
TI - Singular Moment Maps and Quaternionic Geometry
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 143
EP - 153
LA - eng
KW - moment map; symplectic quotient; quaternionic Kähler manifold; hyper-Kähler manifold
UR - http://eudml.org/doc/208657
ER -

References

top
  1. [AH] M. F. Atiyah and N. J. Hitchin, The geometry and dynamics of magnetic monopoles , Princeton University Press, Princeton, 1988. Zbl0671.53001
  2. [Ba] F. Battaglia, S 1 -quotients of quaternion-Kähler manifolds , Proc. Amer. Math. Soc. (to appear). 
  3. [Bea] A. Beauville, Variétés Kähleriennes dont la 1ère classe de Chern est nulle , J. Differential Geom. 18 (1983), 755-782. Zbl0537.53056
  4. [Ber] M. Berger, Sur les groupes d'holonomie des variétés à connexion affines et des variétés riemanniennes , Bull. Soc. Math. France 83 (1955), 279-330. Zbl0068.36002
  5. [Ca1] E. Calabi, Métriques Kählériennes et Fibrés Holomorphes , Ann. Scient. École Norm. Sup. (4) 12 (1979), 269-294. Zbl0431.53056
  6. [Ca2] E. Calabi, Isometric Families of Kähler Structures , in: The Chern Symposium, 1979, W.-Y. Hsiang et al. (eds.), Springer-Verlag, 1980, 23-39. 
  7. [Da] A. S. Dancer, Dihedral singularities and gravitational instantons , J. Geom. Phys. 12 (1993) 77-91. Zbl0851.53029
  8. [DS1] A. S. Dancer and A. F. Swann, Hyperkähler metrics associated to compact Lie groups , Math. Proc. Cambridge Philos. Soc. (to appear). Zbl0867.53056
  9. [DS2] A. S. Dancer and A. F. Swann, The structure of quaternionic Kähler quotients , preprint, 1995. 
  10. [Ga] K. Galicki, A generalization of the momentum mapping construction for quaternionic Kähler manifolds , Comm. Math. Phys. 108 (1987), 117-138. Zbl0608.53058
  11. [GL] K. Galicki and H. B. Lawson, Quaternionic reduction and quaternionic orbifolds , Math. Ann. 282 (1988), 1-21. Zbl0628.53060
  12. [GS] V. Guillemin and S. Sternberg, A normal form for the moment map , In: Differential geometric methods in mathematical physics, S. Sternberg (ed.), Reidel Publishing Company, Dordrecht, 1984, 161-175. 
  13. [H1] N. J. Hitchin, Polygons and Gravitons , Math. Proc. Cambridge Philos. Soc. 85 (1979), 465-476. Zbl0399.53021
  14. [H2] N. J. Hitchin, Kählerian twistor spaces , Proc. London Math. Soc. (3) 43 (1981), 133-150. 
  15. [H3] N. J. Hitchin, The self-duality equations on a Riemann surface , Proc. London Math. Soc. (3) 55 (1987), 59-126. Zbl0634.53045
  16. [HKLR] N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry , Comm. Math. Phys. 108 (1987), 535-589. Zbl0612.53043
  17. [J1] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2 . I , J. Differential Geom. (to appear). 
  18. [J2] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2 . II , J. Differential Geom. (to appear). 
  19. [J3] D. D. Joyce, Compact Riemannian 8-manifolds with holonomy Spin(7), preprint, 1995. 
  20. [KS] P. Z. Kobak and A. F. Swann, Classical nilpotent orbits as hyperKähler quotients , Internat. J. Math. 7 (1996), 193-210. Zbl0858.53042
  21. [K1] P. B. Kronheimer, A hyperkähler structure on the cotangent bundle of a complex Lie group , MSRI preprint, 1988. 
  22. [K2] P. B. Kronheimer, The construction of ale spaces as hyperKähler quotients , J. Differential Geom. 29 (1989), 665-683. Zbl0671.53045
  23. [K3] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons , J. Differential Geom. 29 (1989), 685-697. Zbl0671.53046
  24. [K4] P. B. Kronheimer, Instantons and the geometry of the nilpotent variety , J. Differential Geom. 32 (1990), 473-490. Zbl0725.58007
  25. [Le] C. R. LeBrun, On complete quaternionic-Kähler manifolds , Duke Math. J. 63 (1991), 723-743. Zbl0764.53045
  26. [LS] C. R. LeBrun and S. M. Salamon, Strong rigidity of positive quaternion-Kähler manifolds , Invent. Math. 118 (1994), 109-132. Zbl0815.53078
  27. [Na] H. Nakajima, Instantons on ale spaces, quiver varieties and Kac-Moody algebras , Duke Math. J. 76 (1994), 365-416. Zbl0826.17026
  28. [Pa] D. N. Page, A physical picture of the K3 gravitational instanton , Phys. Lett. 80B (1978), 55-57. 
  29. [PS] Y. S. Poon and S. M. Salamon, Eight-dimensional quaternionic Kähler manifolds with positive scalar curvature , J. Differential Geom. 33 (1991), 363-378. Zbl0733.53035
  30. [Sa] S. M. Salamon, Quaternionic Kähler manifolds , Invent. Math. 67 (1982), 143-171. Zbl0486.53048
  31. [SL] R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction , Ann. of Math. (2) 134 (1991), 375-422. Zbl0759.58019
  32. [Sw] A. F. Swann, HyperKähler and quaternionic Kähler geometry , Math. Ann. 289 (1991), 421-450. Zbl0711.53051
  33. [Wi] J. A. Wiśniewski, On Fano manifolds of large index , Manuscripta Math. 70 (1991), 145-152. Zbl0726.14028
  34. [Wo] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces , J. Math. Mech. 14 (1965), 1033-1047. Zbl0141.38202
  35. [Yau] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I , Comm. Pure Appl. Math. 31 (1978), 339-411. Zbl0369.53059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.