A directional compactification of the complex Bloch variety.
Page 1 Next
H. Knörrer, E. Trubowitz (1990)
Commentarii mathematici Helvetici
Hajime Tsuji (1981)
Mathematische Annalen
Rüdiger W. Braun, Reinhold Meise, B. A. Taylor (2011)
Annales de la faculté des sciences de Toulouse Mathématiques
We prove that an analytic surface in a neighborhood of the origin in satisfies the local Phragmén-Lindelöf condition at the origin if and only if satisfies the following two conditions: (1) is nearly hyperbolic; (2) for each real simple curve in and each , the (algebraic) limit variety satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure -dimensional analytic variety to satisify .
Tobias Heinrich (2005)
Annales Polonici Mathematici
For an analytic variety V in ℂⁿ containing the origin which satisfies the local Phragmén-Lindelöf condition it is shown that for each real simple curve γ and each d ≥ 1 the limit variety satisfies the strong Phragmén-Lindelöf condition (SPL).
Antonio Cassa (1978)
Compositio Mathematica
F. Campana (1980)
Mathematische Annalen
Alfonso Romero (1987)
Manuscripta mathematica
Yum-Tong Siu (1974)
Inventiones mathematicae
Rüdiger Achilles, Mirella Manaresi (1993)
Manuscripta mathematica
P. Tworzewski, T. Winiarski (1982)
Journal für die reine und angewandte Mathematik
Chih-Tong Tang (1977)
Mathematische Annalen
Jean-Paul Speder (1973)
Annales de l'institut Fourier
Soient un espace analytique complexe réduit de dimension pure et un sous-espace lisse de de dimension pure tel que dimension dimension .L’ensemble des points de en lesquels les conditions de Whitney strictes ne sont pas satisfaites par est un sous-espace analytique propre de .
Burckhard Strehl (1973)
Mathematische Annalen
S. Coen (1978)
Compositio Mathematica
Anne Cumenge, Pierre Bonneau (1991)
Mathematische Zeitschrift
Marcin Bilski (2012)
Annales Polonici Mathematici
Let X be an analytic set defined by polynomials whose coefficients are holomorphic functions. We formulate conditions on sequences of holomorphic functions converging locally uniformly to , respectively, such that the sequence of sets obtained by replacing ’s by ’s in the polynomials converges to X.
Wilhelm Jr. Klingenberg (1985/1986)
Mathematische Annalen
Martin Lübke (1980)
Journal für die reine und angewandte Mathematik
Volker Aurich (1983)
Manuscripta mathematica
Andrew John Sommese, James B. Carrell (1978)
Mathematica Scandinavica
Page 1 Next