A directional compactification of the complex Bloch variety.
We prove that an analytic surface in a neighborhood of the origin in satisfies the local Phragmén-Lindelöf condition at the origin if and only if satisfies the following two conditions: (1) is nearly hyperbolic; (2) for each real simple curve in and each , the (algebraic) limit variety satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure -dimensional analytic variety to satisify .
For an analytic variety V in ℂⁿ containing the origin which satisfies the local Phragmén-Lindelöf condition it is shown that for each real simple curve γ and each d ≥ 1 the limit variety satisfies the strong Phragmén-Lindelöf condition (SPL).
Soient un espace analytique complexe réduit de dimension pure et un sous-espace lisse de de dimension pure tel que dimension dimension .L’ensemble des points de en lesquels les conditions de Whitney strictes ne sont pas satisfaites par est un sous-espace analytique propre de .
Let X be an analytic set defined by polynomials whose coefficients are holomorphic functions. We formulate conditions on sequences of holomorphic functions converging locally uniformly to , respectively, such that the sequence of sets obtained by replacing ’s by ’s in the polynomials converges to X.