Direct image of the de Rham system associated with a rational double point

Shinichi Tajima

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 155-160
  • ISSN: 0137-6934

How to cite

top

Tajima, Shinichi. "Direct image of the de Rham system associated with a rational double point." Banach Center Publications 39.1 (1997): 155-160. <http://eudml.org/doc/208658>.

@article{Tajima1997,
author = {Tajima, Shinichi},
journal = {Banach Center Publications},
keywords = {-modules},
language = {eng},
number = {1},
pages = {155-160},
title = {Direct image of the de Rham system associated with a rational double point},
url = {http://eudml.org/doc/208658},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Tajima, Shinichi
TI - Direct image of the de Rham system associated with a rational double point
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 155
EP - 160
LA - eng
KW - -modules
UR - http://eudml.org/doc/208658
ER -

References

top
  1. B E. Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76-102. Zbl0145.09402
  2. D M. G. M. van Doorn and A. R. P. van den Essen, 𝒟 n -Modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), 937-953. Zbl0653.32007
  3. H R. Hotta, Introduction to D-Modules, Institute of Math. Sciences, Madras, India, 1987. Zbl0679.22010
  4. M. Kashiwara, On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 19 (1975), 563-579. Zbl0313.58019
  5. M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976), 33-53. Zbl0354.35082
  6. M. Kashiwara, On the holonomic systems of linear differential equations II, Invent. Math. 49 (1978), 121-136. Zbl0401.32005
  7. M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 17 (1984), 319-365. Zbl0566.32023
  8. M Z. Mebkhout, Local cohomology of analytic spaces, Publ. Res. Inst. Math. Sci. 12 Suppl. (1977), 247-256. Zbl0372.32007
  9. P F. Pham, Singularités des Systèmes Différentiels de Gauss-Manin, Progr. Math. 2 (1979). Zbl0524.32015
  10. S. Tajima and M. Uchida, Integration of the de Rham system associated with the resolution of a singularity (in Japanese), Sûrikaisekikenkyûsho Kôkyûroku 693 (1989), 41-68. 
  11. S. Tajima and M. Uchida, Integral formula for the resolution of a plane curve singularity, Funkcial. Ekvac. 37 (1994), 229-239. Zbl0845.14018
  12. N. Takayama, An algorithm of constructing the integral of a module - an infinite dimensional analog of Grobner basis, in: Procedings of International Symposium on Symbolic and Algebraic Computation (eds. S. Watanabe and M. Nagata), ACM Press, New York, 1990, 206-211. 

NotesEmbed ?

top

You must be logged in to post comments.