Refined quantum invariants for three-manifolds with structure

Christian Blanchet

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 11-22
  • ISSN: 0137-6934

How to cite

top

Blanchet, Christian. "Refined quantum invariants for three-manifolds with structure." Banach Center Publications 42.1 (1998): 11-22. <http://eudml.org/doc/208800>.

@article{Blanchet1998,
author = {Blanchet, Christian},
journal = {Banach Center Publications},
keywords = {3-manifolds; skein theory; quantum invariants; spin structures; TQFT},
language = {eng},
number = {1},
pages = {11-22},
title = {Refined quantum invariants for three-manifolds with structure},
url = {http://eudml.org/doc/208800},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Blanchet, Christian
TI - Refined quantum invariants for three-manifolds with structure
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 11
EP - 22
LA - eng
KW - 3-manifolds; skein theory; quantum invariants; spin structures; TQFT
UR - http://eudml.org/doc/208800
ER -

References

top
  1. [At] M. F. Atiyah, Topological quantum field theories, Publ. Math. IHES 68 (1989) 175-186. 
  2. [BHMV1] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 No 4 (1992), 685-699. Zbl0771.57004
  3. [BHMV2] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Remarks on the Three-manifold Invariants θ p , in ’Operator Algebras, Mathematical Physics, and Low Dimensional Topology’ (R. Herman, B. Tanbay, Ed.), A.K.Peters Research Notes in Mathematics Vol 5, 39-59 (1993). Zbl0839.57013
  4. [BHMV3] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Topological Quantum Field Theories derived from the Kauffman bracket, Topology 34 No 4 (1995), 883-927. Zbl0887.57009
  5. [Bl1] C. Blanchet, Invariants on three-manifolds with spin structure, Comm. Math. Helv. 67 (1992), 406-427. Zbl0771.57005
  6. [Bl2] C. Blanchet, On spin type structures related with quantum invariants, in preparation. 
  7. [BM] C. Blanchet and G. Masbaum, Topological Quantum Field Theories for surfaces with spin structure, Duke Math. Journal 82 No 2 (1996), 229-267. Zbl0854.57025
  8. [FR] R. Fenn and C. Rourke, On Kirby calculus of links, Topology 18 (1979) 1-15. Zbl0413.57006
  9. [HP] J. Hoste and J. Przytycki, A survey of skein modules of 3-manifolds, in 'Knots 90', Proceedings of the International Conference on Knot Theory and Related Topics, Osaka (Japan), August 15-19, 1990 (A. Kawauchi Ed.), Walter de Gruyter (1992), 363-379. Zbl0772.57022
  10. [Jo] V. Jones, A polynomial invariant for knots via Von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111. Zbl0564.57006
  11. [Ka] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395-407. Zbl0622.57004
  12. [Ki] R. Kirby, A calculus of framed links in S 3 , Invent. Math. 45 (1978), 35-56. Zbl0377.55001
  13. [KM] R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,C), Inv. Math. 105 (1991), 473-545. Zbl0745.57006
  14. [KT] T. Khono and T. Takata, Symmetry of Witten 3-manifold invariants for sl(n,C), Journal of Knot Theory Ram. Vol. 2 No 2 (1993) 149-169. 
  15. [Li1] W. B. R. Lickorish, Three-manifold invariants and the Temperley-Lieb algebra, Math. Ann. 290 (1991), 657-670. Zbl0739.57004
  16. [Li2] W. B. R. Lickorish, Calculations with the Temperley-Lieb algebra, Comm. Math. Helv. 67 (1992), 571-591. Zbl0779.57008
  17. [Li3] W. B. R. Lickorish, The skein method for 3-manifolds invariants, J. Knot. Th. Ram. 2 (1993), 171-194. Zbl0793.57003
  18. [MA] H. R. Morton and A. K. Aiston, Young diagrams, the Homfly skein of the annulus and unitary invariants, Proceedings of Knots 96, Tokyo (to appear). Zbl0966.57016
  19. [Mo] H. R. Morton, Invariants of links and 3-manifolds from skein theory and from quantum groups, In 'Topics in knot theory', the Proceedings of the NATO Summer Institute in Arzurum, NATO ASI Series C 399 (M. Bozhüyük Ed.), Kluwer (1993), 107-156. 
  20. [ML] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer-Verlag (1971). 
  21. [MOO] H. Murakami, T. Othsuki and M. Okada, Invariants of three-manifolds derived from linking matrices of framed links, Osaka J. Math. 29 (1992), 545-572. Zbl0776.57009
  22. [MPR] J. Mattes, M. Polyak and N. Reshetikhin, On invariants of 3-manifolds derived from abelians groups, in 'Quantum Topology' (L. Kaufmann, R. Baadhio Ed.), World Scientific (1993). Zbl0855.57014
  23. [Mu] H. Murakami, Quantum invariants for 3-manifolds, Proc. of the 3rd Korea-Japan School of knots and links (to appear). 
  24. [OY] T. Ohtsuki and S. Yamada, Quantum SU(3) invariants via linear skein theory, J. Knot Theory Ram. 6 (1997), 373-404. Zbl0949.57011
  25. [P] J. Przytycki, Skein modules of 3-manifolds, Bull. Ac. Pol. Math. 39(1-2) (1991), 91-100. Zbl0762.57013
  26. [RT] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-598. Zbl0725.57007
  27. [St] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press (1968). 
  28. [Tu1] V. G. Turaev, State sum models in low-dimensional topology, Proc. ICM Kyoto 1990, vol I, 689-698. Zbl0744.57007
  29. [Tu2] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Math. 18 (1994). 
  30. [TW] V. G. Turaev and H. Wenzl Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Int. Journal of Math. Vol. 4 No 2 (1993) 323-358. 
  31. [Vo] P. Vogel, Les invariants récents des variétés de dimension 3, Séminaire Bourbaki 799 (1995). 
  32. [Wi] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. Zbl0667.57005
  33. [Yo] Y. Yokota, Skeins and quantum SU(N) invariants of 3-manifolds, Math. Ann. 307 (1997), 109-138. Zbl0953.57009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.