Topological quantum field theory
Publications Mathématiques de l'IHÉS (1988)
- Volume: 68, page 175-186
- ISSN: 0073-8301
Access Full Article
topHow to cite
topAtiyah, Michael F.. "Topological quantum field theory." Publications Mathématiques de l'IHÉS 68 (1988): 175-186. <http://eudml.org/doc/104037>.
@article{Atiyah1988,
author = {Atiyah, Michael F.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {topological quantum field theories; Floer/Gromov theory; holomorphic conformal field theories; Jones/Witten theory; Casson theory; Johnson theory; Thursten theory; Floer/Donaldson theory},
language = {eng},
pages = {175-186},
publisher = {Institut des Hautes Études Scientifiques},
title = {Topological quantum field theory},
url = {http://eudml.org/doc/104037},
volume = {68},
year = {1988},
}
TY - JOUR
AU - Atiyah, Michael F.
TI - Topological quantum field theory
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 68
SP - 175
EP - 186
LA - eng
KW - topological quantum field theories; Floer/Gromov theory; holomorphic conformal field theories; Jones/Witten theory; Casson theory; Johnson theory; Thursten theory; Floer/Donaldson theory
UR - http://eudml.org/doc/104037
ER -
References
top- [1] M. F. ATIYAH, New invariants of three and four dimensional manifolds, in The Mathematical Heritage of Herman Weyl, Proc. Symp. Pure Math., 48, American Math. Soc. (1988), 285-299. Zbl0667.57018MR89m:57034
- [2] S. K. DONALDSON, Polynomial invariants for smooth four-manifolds, to appear in Topology. Zbl0715.57007
- [3] A. FLOER, Morse theory for fixed points of symplectic diffeomorphisms, Bull. A.M.S., 16 (1987), 279-281. Zbl0617.53042MR88b:58024
- [4] A. FLOER, An instanton invariant for three manifolds, Courant Institute preprint, to appear. Zbl0684.53027
- [5] M. GROMOV, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347. Zbl0592.53025MR87j:53053
- [6] N. J. HITCHIN, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987), 59-126. Zbl0634.53045MR89a:32021
- [7] D. JOHNSON, A geometric form of Casson's invariant and its connection with Reidemeister torsion, unpublished lecture notes.
- [8] V. F. R. JONES, Hecke algebra representations of braid groups and link polynomials, Ann. of Math., 126 (1987), 335-388. Zbl0631.57005MR89c:46092
- [9] A. PRESSLEY and G. B. SEGAL, Loop Groups, Oxford University Press (1988). Zbl0638.22009
- [10] G. B. SEGAL, The definition of conformal field theory (to appear). Zbl0657.53060
- [11] E. WITTEN, Super-symmetry and Morse theory, J. Diff. Geom., 17 (4) (1982), 661-692. Zbl0499.53056MR84b:58111
- [12] E. WITTEN, Quantum field theory and the Jones polynomial, Comm. Math. Phys. (to appear). Zbl0667.57005
- [13] E. WITTEN, Topological quantum field theory, Comm. Math. Phys., 117 (1988), 353-386. Zbl0656.53078MR89m:57037
- [14] E. WITTEN, Topological sigma models, Comm. Math. Phys., 118 (1988), 411-449. Zbl0674.58047MR90b:81080
- [15] E. WITTEN, 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311 (1988/1989), 46-78. Zbl1258.83032MR90a:83041
- [16] E. WITTEN, Topology changing amplitudes in 2 + 1 dimensional gravity, Nucl. Phys. B (to appear).
- [17] E. WITTEN, Elliptic genera and quantum field theory, Comm. Math. Phys., 109 (1987), 525-536. Zbl0625.57008MR89i:57017
Citations in EuDML Documents
top- Michael Atiyah, The Jones-Witten invariants of knots
- V. Poénaru, C. Tanasi, A note on the wick of the Casson handles
- Florin Dumitrescu, Another Look at Connections
- Vladimir G. Turaev, Axioms for topological quantum field theories
- A. A. Balinsky, Racks and orbits of dressing transformations
- David N. Pham, -quasi-Frobenius Lie algebras
- Sylvain Gervais, The -central extension of the Mapping Class Group of orientable surfaces
- Vladimir Turaev, Quantum invariants of links and 3-valent graphs in 3-manifolds
- Patrick Gilmer, A TQFT for Wormhole cobordisms over the field of rational functions
- R. J. Lawrence, Asymptotic Expansions of Witten-Reshetikhin-Turaev Invariants for Some Simple -Manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.