Homfly polynomials as vassiliev link invariants

Taizo Kanenobu; Yasuyuki Miyazawa

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 165-185
  • ISSN: 0137-6934

Abstract

top
We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.

How to cite

top

Kanenobu, Taizo, and Miyazawa, Yasuyuki. "Homfly polynomials as vassiliev link invariants." Banach Center Publications 42.1 (1998): 165-185. <http://eudml.org/doc/208803>.

@article{Kanenobu1998,
abstract = {We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min\{n,[(n+r-1)/2]\}.},
author = {Kanenobu, Taizo, Miyazawa, Yasuyuki},
journal = {Banach Center Publications},
keywords = {link; Conway polynomial; Jones polynomial; HOMFLY polynomial; Vassiliev link invariant; Vassiliev invariant; dimension of space of Vassiliev invariants},
language = {eng},
number = {1},
pages = {165-185},
title = {Homfly polynomials as vassiliev link invariants},
url = {http://eudml.org/doc/208803},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Kanenobu, Taizo
AU - Miyazawa, Yasuyuki
TI - Homfly polynomials as vassiliev link invariants
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 165
EP - 185
AB - We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.
LA - eng
KW - link; Conway polynomial; Jones polynomial; HOMFLY polynomial; Vassiliev link invariant; Vassiliev invariant; dimension of space of Vassiliev invariants
UR - http://eudml.org/doc/208803
ER -

References

top
  1. [BN] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423-472. Zbl0898.57001
  2. [B1] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. 28 (1993), 253-287. Zbl0785.57001
  3. [B2] J. S. Birman, On the combinatorics of Vassiliev invariants, Braid group, knot theory and statistical mechanics II (M. L. Ge and C. N. Yang, eds.), Advanced Series in Mathematical Physics, World Scientific, Singapore-New Jersey-London-Hong Kong 1994, pp. 1-19. 
  4. [BL] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225-270. Zbl0812.57011
  5. [CD] S. V. Chmutov and S. V. Duzhin, An upper bound for the number of Vassiliev knot invariants, J. Knot Theory Ramifications 3 (1994), 141-151. Zbl0816.57005
  6. [C] J. H. Conway, An enumeration of knots and links, Computational Problems in Abstract Algebra (J. Leech, ed.), Pergamon Press, New York, 1969, pp. 329-358. 
  7. [FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. Zbl0572.57002
  8. [G] M. N. Gusarov, A new form of the Conway-Jones polynomial of oriented links, Zap. Nauchn. Sem. Len. Otdel Mat. Inst. Steklov (LOMI) 193 (1991), Geom. i Topol. 1, 4-9; English translation: Topology of manifolds and varieties, Advances in Soviet Mathematics. Vol. 18, Amer. Math. Soc., Providence, RI, 1994, pp. 167-172. 
  9. [H] J. Hoste, The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc. 95 (1985), 299-302. Zbl0576.57005
  10. [J] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335-388. Zbl0631.57005
  11. [Kf] L. H. Kauffman On Knots, Ann. of Math. Studies 115, Princeton Univ. Press, Princeton, 1987. 
  12. [Kw] A. Kawauchi On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math. 11 (1994), 49-68. Zbl0861.57013
  13. [L] J. Lannes Sur les invariants de Vassiliev de degré inférieur ou égal à 3, Enseign. Math. (2) 39 (1993), 295-316. 
  14. [LM] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141. Zbl0608.57009
  15. [MM] P. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995), 501-520. Zbl0845.57007
  16. [Me] G. Meng, Bracket models for weight systems and the universal Vassiliev invariants, Topology Appl. 76 (1997), 47-60. Zbl1001.57028
  17. [Mi] Y. Miyazawa, The third derivative of the Jones polynomial, J. Knot Theory Ramifications, (to appear). Zbl0885.57004
  18. [Mu1] H. Murakami, On derivatives of the Jones polynomial, Kobe J. Math. 3 (1986), 61-64. Zbl0624.57003
  19. [Mu2] H. Murakami, Vassiliev type invariant of order two for a link, Proc. Amer. Math. Soc. 124 (1996), 3889-3896. Zbl0874.57004
  20. [N] K. Y. Ng, Groups of ribbon knots, preprint. 
  21. [PT] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139. Zbl0655.57002
  22. [R] D. Rolfsen Knots and Links, Lecture Series no. 7, Publish or Perish, Berkeley, 1976. 
  23. [S1] T. Stanford, Finite-type invariants of knots, links, and graphs, Topology 35 (1996), 1027-1050. Zbl0863.57005
  24. [S2] T. Stanford, The functoriality of Vassiliev-type invariants of links, braids, and knotted graphs, J. Knot Theory Ramifications 3 (1994) 247-262. Zbl0841.57018
  25. [V] V. A. Vassiliev, Cohomology of knot spaces, Theory of Singularities and its Applications (V. I. Arnold, ed.), Advances in Soviet Mathematics, Vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23-69. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.