Homfly polynomials as vassiliev link invariants
Taizo Kanenobu; Yasuyuki Miyazawa
Banach Center Publications (1998)
- Volume: 42, Issue: 1, page 165-185
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKanenobu, Taizo, and Miyazawa, Yasuyuki. "Homfly polynomials as vassiliev link invariants." Banach Center Publications 42.1 (1998): 165-185. <http://eudml.org/doc/208803>.
@article{Kanenobu1998,
abstract = {We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min\{n,[(n+r-1)/2]\}.},
author = {Kanenobu, Taizo, Miyazawa, Yasuyuki},
journal = {Banach Center Publications},
keywords = {link; Conway polynomial; Jones polynomial; HOMFLY polynomial; Vassiliev link invariant; Vassiliev invariant; dimension of space of Vassiliev invariants},
language = {eng},
number = {1},
pages = {165-185},
title = {Homfly polynomials as vassiliev link invariants},
url = {http://eudml.org/doc/208803},
volume = {42},
year = {1998},
}
TY - JOUR
AU - Kanenobu, Taizo
AU - Miyazawa, Yasuyuki
TI - Homfly polynomials as vassiliev link invariants
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 165
EP - 185
AB - We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.
LA - eng
KW - link; Conway polynomial; Jones polynomial; HOMFLY polynomial; Vassiliev link invariant; Vassiliev invariant; dimension of space of Vassiliev invariants
UR - http://eudml.org/doc/208803
ER -
References
top- [BN] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423-472. Zbl0898.57001
- [B1] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. 28 (1993), 253-287. Zbl0785.57001
- [B2] J. S. Birman, On the combinatorics of Vassiliev invariants, Braid group, knot theory and statistical mechanics II (M. L. Ge and C. N. Yang, eds.), Advanced Series in Mathematical Physics, World Scientific, Singapore-New Jersey-London-Hong Kong 1994, pp. 1-19.
- [BL] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225-270. Zbl0812.57011
- [CD] S. V. Chmutov and S. V. Duzhin, An upper bound for the number of Vassiliev knot invariants, J. Knot Theory Ramifications 3 (1994), 141-151. Zbl0816.57005
- [C] J. H. Conway, An enumeration of knots and links, Computational Problems in Abstract Algebra (J. Leech, ed.), Pergamon Press, New York, 1969, pp. 329-358.
- [FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. Zbl0572.57002
- [G] M. N. Gusarov, A new form of the Conway-Jones polynomial of oriented links, Zap. Nauchn. Sem. Len. Otdel Mat. Inst. Steklov (LOMI) 193 (1991), Geom. i Topol. 1, 4-9; English translation: Topology of manifolds and varieties, Advances in Soviet Mathematics. Vol. 18, Amer. Math. Soc., Providence, RI, 1994, pp. 167-172.
- [H] J. Hoste, The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc. 95 (1985), 299-302. Zbl0576.57005
- [J] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335-388. Zbl0631.57005
- [Kf] L. H. Kauffman On Knots, Ann. of Math. Studies 115, Princeton Univ. Press, Princeton, 1987.
- [Kw] A. Kawauchi On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math. 11 (1994), 49-68. Zbl0861.57013
- [L] J. Lannes Sur les invariants de Vassiliev de degré inférieur ou égal à 3, Enseign. Math. (2) 39 (1993), 295-316.
- [LM] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141. Zbl0608.57009
- [MM] P. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995), 501-520. Zbl0845.57007
- [Me] G. Meng, Bracket models for weight systems and the universal Vassiliev invariants, Topology Appl. 76 (1997), 47-60. Zbl1001.57028
- [Mi] Y. Miyazawa, The third derivative of the Jones polynomial, J. Knot Theory Ramifications, (to appear). Zbl0885.57004
- [Mu1] H. Murakami, On derivatives of the Jones polynomial, Kobe J. Math. 3 (1986), 61-64. Zbl0624.57003
- [Mu2] H. Murakami, Vassiliev type invariant of order two for a link, Proc. Amer. Math. Soc. 124 (1996), 3889-3896. Zbl0874.57004
- [N] K. Y. Ng, Groups of ribbon knots, preprint.
- [PT] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139. Zbl0655.57002
- [R] D. Rolfsen Knots and Links, Lecture Series no. 7, Publish or Perish, Berkeley, 1976.
- [S1] T. Stanford, Finite-type invariants of knots, links, and graphs, Topology 35 (1996), 1027-1050. Zbl0863.57005
- [S2] T. Stanford, The functoriality of Vassiliev-type invariants of links, braids, and knotted graphs, J. Knot Theory Ramifications 3 (1994) 247-262. Zbl0841.57018
- [V] V. A. Vassiliev, Cohomology of knot spaces, Theory of Singularities and its Applications (V. I. Arnold, ed.), Advances in Soviet Mathematics, Vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23-69.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.