Spin networks and the bracket polynomial

Louis Kauffman

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 187-204
  • ISSN: 0137-6934


This paper discusses Penrose spin networks in relation to the bracket polynomial.

How to cite


Kauffman, Louis. "Spin networks and the bracket polynomial." Banach Center Publications 42.1 (1998): 187-204. <http://eudml.org/doc/208804>.

abstract = {This paper discusses Penrose spin networks in relation to the bracket polynomial.},
author = {Kauffman, Louis},
journal = {Banach Center Publications},
keywords = {bracket state model},
language = {eng},
number = {1},
pages = {187-204},
title = {Spin networks and the bracket polynomial},
url = {http://eudml.org/doc/208804},
volume = {42},
year = {1998},

AU - Kauffman, Louis
TI - Spin networks and the bracket polynomial
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 187
EP - 204
AB - This paper discusses Penrose spin networks in relation to the bracket polynomial.
LA - eng
KW - bracket state model
UR - http://eudml.org/doc/208804
ER -


  1. [1] D. Bullock, Rings of S L 2 ( C ) characters and the Kauffman bracket skein module, preprint, 1996. 
  2. [2] J. Scott Carter, D. E. Flath and M. Saito, The Classical and Quantum 6j-Symbols, Math. Notes 43, Princeton Univ. Press, 1995. Zbl0851.17001
  3. [3] J. Scott Carter, L. H. Kauffman and M. Saito, Diagrammatics, Singularities and Their Algebraic Interpretations, in: Conference Proceedings of the Brasilian Mathematical Society, to appear. 
  4. [4] L. Crane and I. Frenkel, Four dimensional topological quantum field theory, Hopf categories and canonical bases, J. Math. Phys. 35 (1994), 5136-5154. Zbl0892.57014
  5. [5] L. Crane, L. H. Kauffman and D. Yetter, State sum invariants of 4-manifolds, J. Knot Theory and Its Ramifications, 1997, to appear. Zbl0883.57021
  6. [6] D. S. Freed and R. E. Gompf, Computer calculation of Witten's three-manifold invariant, Comm. Math. Phys. 141 (1991), 79-117. Zbl0739.53065
  7. [7] B. Hasslacher and M. J. Perry, Spin networks are simplicial quantum gravity, Phys. Lett. B 103 (1981), 21-24. 
  8. [8] L. C. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semi-classical approximation, Comm. Math. Phys. 147 (1992), 563-604. Zbl0755.53054
  9. [9] V. F. R. Jones, A polynomial invariant of links via von Neumann algebras, Bull. Amer. Math. Soc. 129 (1985), 103-112. 
  10. [10] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. Zbl0622.57004
  11. [11] L. H. Kauffman, Statistical mechanics and the Jones polynomial, in: Contemp. Math. 78, Amer. math. Soc., 1989, 263-297. 
  12. [12] L. H. Kauffman, Map coloring, q-deformed spin networks, and Turaev-Viro invariants for 3-manifolds, Internat. J. Modern Phys. B 6 (1992), 1765-1794. Zbl0826.57009
  13. [13] L. H. Kauffman, Knots and Physics, World Scientific, 1991, 1993. Zbl0733.57004
  14. [14] L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, Ann. Math. Stud. 114, Princeton Univ. Press, 1994. Zbl0821.57003
  15. [15] R. Lawrence, Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds, J. Math. Phys. 36 (1995), 6106-6129. Zbl0877.57008
  16. [16] J. P. Moussouris, Quantum Models of Space-Time Based on Recoupling Theory, thesis, Oxford Univ., 1983. 
  17. [17] R. Penrose, Angular momentum: An approach to Combinatorial Spacetime, in: Quantum Theory and Beyond, T. Bastin (ed.), Cambridge Univ. Press, 1969. 
  18. [18] R. Penrose, Applications of negative dimensional tensors, in: Combinatorial Mathematics and Its Applications, D. J. A. Welsh (ed.), Academic Press, 1971. Zbl0216.43502
  19. [19] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in: Spectroscopic and Group Theoretical Methods in Theoretical Physics, North-Holland, Amsterdam, 1968. 
  20. [20] K. Reidemeister, Knotentheorie, Julius Springer, Berlin, 1933; Chelsea, N.Y., 1948. 
  21. [21] N. Y. Reshetikhin and V. Turaev, Invariants of Three Manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597. Zbl0725.57007
  22. [22] L. Rozansky, Witten's invariant of 3-dimensional manifolds: loop expansion and surgery calculus, in: Knots and Applications, L. Kauffman (ed.), World Scientific, 1995. Zbl1149.58307
  23. [23] A. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978), 247. Zbl0383.70017
  24. [24] L. Smolin, The geometry of quantum spin networks, preprint, Center for Gravitational Physics and Geometry, Penn. State University, University Park, PA, 1996. 
  25. [25] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j symbols, Topology 31 (1992), 865-902. Zbl0779.57009
  26. [26] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. Zbl0667.57005
  27. [27] E. Witten, 2+1 gravity as an exactly soluble system, Nuclear Phys. B 311, (1988/89), 46-78. Zbl1258.83032

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.