Spin networks and the bracket polynomial
Banach Center Publications (1998)
- Volume: 42, Issue: 1, page 187-204
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKauffman, Louis. "Spin networks and the bracket polynomial." Banach Center Publications 42.1 (1998): 187-204. <http://eudml.org/doc/208804>.
@article{Kauffman1998,
abstract = {This paper discusses Penrose spin networks in relation to the bracket polynomial.},
author = {Kauffman, Louis},
journal = {Banach Center Publications},
keywords = {bracket state model},
language = {eng},
number = {1},
pages = {187-204},
title = {Spin networks and the bracket polynomial},
url = {http://eudml.org/doc/208804},
volume = {42},
year = {1998},
}
TY - JOUR
AU - Kauffman, Louis
TI - Spin networks and the bracket polynomial
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 187
EP - 204
AB - This paper discusses Penrose spin networks in relation to the bracket polynomial.
LA - eng
KW - bracket state model
UR - http://eudml.org/doc/208804
ER -
References
top- [1] D. Bullock, Rings of characters and the Kauffman bracket skein module, preprint, 1996.
- [2] J. Scott Carter, D. E. Flath and M. Saito, The Classical and Quantum 6j-Symbols, Math. Notes 43, Princeton Univ. Press, 1995. Zbl0851.17001
- [3] J. Scott Carter, L. H. Kauffman and M. Saito, Diagrammatics, Singularities and Their Algebraic Interpretations, in: Conference Proceedings of the Brasilian Mathematical Society, to appear.
- [4] L. Crane and I. Frenkel, Four dimensional topological quantum field theory, Hopf categories and canonical bases, J. Math. Phys. 35 (1994), 5136-5154. Zbl0892.57014
- [5] L. Crane, L. H. Kauffman and D. Yetter, State sum invariants of 4-manifolds, J. Knot Theory and Its Ramifications, 1997, to appear. Zbl0883.57021
- [6] D. S. Freed and R. E. Gompf, Computer calculation of Witten's three-manifold invariant, Comm. Math. Phys. 141 (1991), 79-117. Zbl0739.53065
- [7] B. Hasslacher and M. J. Perry, Spin networks are simplicial quantum gravity, Phys. Lett. B 103 (1981), 21-24.
- [8] L. C. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semi-classical approximation, Comm. Math. Phys. 147 (1992), 563-604. Zbl0755.53054
- [9] V. F. R. Jones, A polynomial invariant of links via von Neumann algebras, Bull. Amer. Math. Soc. 129 (1985), 103-112.
- [10] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. Zbl0622.57004
- [11] L. H. Kauffman, Statistical mechanics and the Jones polynomial, in: Contemp. Math. 78, Amer. math. Soc., 1989, 263-297.
- [12] L. H. Kauffman, Map coloring, q-deformed spin networks, and Turaev-Viro invariants for 3-manifolds, Internat. J. Modern Phys. B 6 (1992), 1765-1794. Zbl0826.57009
- [13] L. H. Kauffman, Knots and Physics, World Scientific, 1991, 1993. Zbl0733.57004
- [14] L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, Ann. Math. Stud. 114, Princeton Univ. Press, 1994. Zbl0821.57003
- [15] R. Lawrence, Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds, J. Math. Phys. 36 (1995), 6106-6129. Zbl0877.57008
- [16] J. P. Moussouris, Quantum Models of Space-Time Based on Recoupling Theory, thesis, Oxford Univ., 1983.
- [17] R. Penrose, Angular momentum: An approach to Combinatorial Spacetime, in: Quantum Theory and Beyond, T. Bastin (ed.), Cambridge Univ. Press, 1969.
- [18] R. Penrose, Applications of negative dimensional tensors, in: Combinatorial Mathematics and Its Applications, D. J. A. Welsh (ed.), Academic Press, 1971. Zbl0216.43502
- [19] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in: Spectroscopic and Group Theoretical Methods in Theoretical Physics, North-Holland, Amsterdam, 1968.
- [20] K. Reidemeister, Knotentheorie, Julius Springer, Berlin, 1933; Chelsea, N.Y., 1948.
- [21] N. Y. Reshetikhin and V. Turaev, Invariants of Three Manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597. Zbl0725.57007
- [22] L. Rozansky, Witten's invariant of 3-dimensional manifolds: loop expansion and surgery calculus, in: Knots and Applications, L. Kauffman (ed.), World Scientific, 1995. Zbl1149.58307
- [23] A. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978), 247. Zbl0383.70017
- [24] L. Smolin, The geometry of quantum spin networks, preprint, Center for Gravitational Physics and Geometry, Penn. State University, University Park, PA, 1996.
- [25] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j symbols, Topology 31 (1992), 865-902. Zbl0779.57009
- [26] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. Zbl0667.57005
- [27] E. Witten, 2+1 gravity as an exactly soluble system, Nuclear Phys. B 311, (1988/89), 46-78. Zbl1258.83032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.