Numerical application of knot invariants and universality of random knotting
Tetsuo Deguchi; Kyoichi Tsurusaki
Banach Center Publications (1998)
- Volume: 42, Issue: 1, page 77-85
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topDeguchi, Tetsuo, and Tsurusaki, Kyoichi. "Numerical application of knot invariants and universality of random knotting." Banach Center Publications 42.1 (1998): 77-85. <http://eudml.org/doc/208827>.
@article{Deguchi1998,
abstract = {We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability ($P_K(N)$) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of $P_K(N)$, which may be a new numerical invariant of knots.},
author = {Deguchi, Tetsuo, Tsurusaki, Kyoichi},
journal = {Banach Center Publications},
keywords = {knotting probability},
language = {eng},
number = {1},
pages = {77-85},
title = {Numerical application of knot invariants and universality of random knotting},
url = {http://eudml.org/doc/208827},
volume = {42},
year = {1998},
}
TY - JOUR
AU - Deguchi, Tetsuo
AU - Tsurusaki, Kyoichi
TI - Numerical application of knot invariants and universality of random knotting
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 77
EP - 85
AB - We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability ($P_K(N)$) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of $P_K(N)$, which may be a new numerical invariant of knots.
LA - eng
KW - knotting probability
UR - http://eudml.org/doc/208827
ER -
References
top- [1] D. Bar-Natan, Topology 34 (1995) 423-472.
- [2] J. S. Birman and X. S. Lin, Invent. Math. 111 (1993), 225-270.
- [3] Y. D. Chen, J. Chem. Phys. 75 (1981), 2447-2453.
- [4] F. B. Dean, A. Stasiak, T. Koller and N. R. Cozzarelli, J. Biol. Chem. 260 (1985), 4795-4983.
- [5] T. Deguchi and K. Tsurusaki, Phys. Lett. A 174 (1993), 29-37.
- [6] T. Deguchi and K. Tsurusaki, J. Phys. Soc. Jpn. 62 (1993), 1411-1414.
- [7] T. Deguchi and K. Tsurusaki, J. Knot Theory and Its Ramifications 3(1994), 321-353.
- [8] T. Deguchi and K. Tsurusaki, A Universality of Random Knotting, preprint 1995.
- [9] M. Delbrück, in Mathematical Problems in the Biological Sciences, ed. R.E. Bellman, Proc. Symp. Appl. Math. 14 (1962) 55-63.
- [10] J. des Cloizeaux and M. L. Mehta, J. Phys. (Paris) 40 (1979), 665-670.
- [11] Y. Diao, N. Pippenger and D. W. Sumners, J. Knot Theory and Its Ramifications 3 (1994), 419-429.
- [12] S. F. Edwards, J. Phys. A1 (1968) 15-28.
- [13] H. L. Frisch and E. Wasserman, C J. Amer. Chem. Soc. 83 (1961), 3789-3794.
- [14] F. Jaeger, D. L. Vertigan and D. J. A. Welsh, Math. Proc. Camb. Phil. Soc. 108 (1990), 35-53.
- [15] E. J. Janse van Rensburg and S. G. Whittington, J. Phys. A: Math. Gen. 23 (1990), 3573-3590.
- [16] K. Koniaris and M. Muthukumar, Phys. Rev. Lett. 66 (1991), 2211-2214.
- [17] J. P. J. Michels and F. W. Wiegel, Phys. Lett. 90A (1982), 381-384.
- [18] Random Knotting and Linking, eds. K. C. Millett and D. W. Sumners, World Scientific, Singapore, 1994.
- [19] M. Polyak and O. Viro, Intern. Math. Res. Notices, (1994), 445-453.
- [20] T. M. Przytycka and J. H. Przytycki, in Graph Structure Theory, eds. N. Robertson and P. Seymour, Contemp. math. AMS 147 (1993), 63-108.
- [21] V. V. Rybenkov, N. R. Cozzarelli and A. V. Vologodskii, Proc. Natl. Acad. Sci. USA 90 (1993), 5307-5311.
- [22] S. Y. Shaw and J. C. Wang, Science 260 (1993), 533-536.
- [23] K. Shishido, N. Komiyama and S. Ikawa, J. Mol, Biol. 195 (1987), 215-218.
- [24] D. W. Sumners and S. G. Whittington, J. Phys. A : Math. Gen. 21 (1988), 1689-1694.
- [25] N. Pippenger, Discrete Applied Math. 25 (1989), 273-278.
- [26] K. Tsurusaki, Thesis: Statistical Study of Random Knotting, University of Tokyo, 1995.
- [27] K. Tsurusaki and T. Deguchi, J. Phys. Soc. Jpn. 64 (1995), 1506-1518.
- [28] A. V. Vologodskii, A. V. Lukashin, M. D. Frank-Kamenetskii and V. V. Anshele- vich, Sov. Phys. JETP 39 (1974), 1059-1063.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.