Numerical application of knot invariants and universality of random knotting

Tetsuo Deguchi; Kyoichi Tsurusaki

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 77-85
  • ISSN: 0137-6934

Abstract

top
We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability ( P K ( N ) ) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of P K ( N ) , which may be a new numerical invariant of knots.

How to cite

top

Deguchi, Tetsuo, and Tsurusaki, Kyoichi. "Numerical application of knot invariants and universality of random knotting." Banach Center Publications 42.1 (1998): 77-85. <http://eudml.org/doc/208827>.

@article{Deguchi1998,
abstract = {We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability ($P_K(N)$) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of $P_K(N)$, which may be a new numerical invariant of knots.},
author = {Deguchi, Tetsuo, Tsurusaki, Kyoichi},
journal = {Banach Center Publications},
keywords = {knotting probability},
language = {eng},
number = {1},
pages = {77-85},
title = {Numerical application of knot invariants and universality of random knotting},
url = {http://eudml.org/doc/208827},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Deguchi, Tetsuo
AU - Tsurusaki, Kyoichi
TI - Numerical application of knot invariants and universality of random knotting
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 77
EP - 85
AB - We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability ($P_K(N)$) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of $P_K(N)$, which may be a new numerical invariant of knots.
LA - eng
KW - knotting probability
UR - http://eudml.org/doc/208827
ER -

References

top
  1. [1] D. Bar-Natan, Topology 34 (1995) 423-472. 
  2. [2] J. S. Birman and X. S. Lin, Invent. Math. 111 (1993), 225-270. 
  3. [3] Y. D. Chen, J. Chem. Phys. 75 (1981), 2447-2453. 
  4. [4] F. B. Dean, A. Stasiak, T. Koller and N. R. Cozzarelli, J. Biol. Chem. 260 (1985), 4795-4983. 
  5. [5] T. Deguchi and K. Tsurusaki, Phys. Lett. A 174 (1993), 29-37. 
  6. [6] T. Deguchi and K. Tsurusaki, J. Phys. Soc. Jpn. 62 (1993), 1411-1414. 
  7. [7] T. Deguchi and K. Tsurusaki, J. Knot Theory and Its Ramifications 3(1994), 321-353. 
  8. [8] T. Deguchi and K. Tsurusaki, A Universality of Random Knotting, preprint 1995. 
  9. [9] M. Delbrück, in Mathematical Problems in the Biological Sciences, ed. R.E. Bellman, Proc. Symp. Appl. Math. 14 (1962) 55-63. 
  10. [10] J. des Cloizeaux and M. L. Mehta, J. Phys. (Paris) 40 (1979), 665-670. 
  11. [11] Y. Diao, N. Pippenger and D. W. Sumners, J. Knot Theory and Its Ramifications 3 (1994), 419-429. 
  12. [12] S. F. Edwards, J. Phys. A1 (1968) 15-28. 
  13. [13] H. L. Frisch and E. Wasserman, C J. Amer. Chem. Soc. 83 (1961), 3789-3794. 
  14. [14] F. Jaeger, D. L. Vertigan and D. J. A. Welsh, Math. Proc. Camb. Phil. Soc. 108 (1990), 35-53. 
  15. [15] E. J. Janse van Rensburg and S. G. Whittington, J. Phys. A: Math. Gen. 23 (1990), 3573-3590. 
  16. [16] K. Koniaris and M. Muthukumar, Phys. Rev. Lett. 66 (1991), 2211-2214. 
  17. [17] J. P. J. Michels and F. W. Wiegel, Phys. Lett. 90A (1982), 381-384. 
  18. [18] Random Knotting and Linking, eds. K. C. Millett and D. W. Sumners, World Scientific, Singapore, 1994. 
  19. [19] M. Polyak and O. Viro, Intern. Math. Res. Notices, (1994), 445-453. 
  20. [20] T. M. Przytycka and J. H. Przytycki, in Graph Structure Theory, eds. N. Robertson and P. Seymour, Contemp. math. AMS 147 (1993), 63-108. 
  21. [21] V. V. Rybenkov, N. R. Cozzarelli and A. V. Vologodskii, Proc. Natl. Acad. Sci. USA 90 (1993), 5307-5311. 
  22. [22] S. Y. Shaw and J. C. Wang, Science 260 (1993), 533-536. 
  23. [23] K. Shishido, N. Komiyama and S. Ikawa, J. Mol, Biol. 195 (1987), 215-218. 
  24. [24] D. W. Sumners and S. G. Whittington, J. Phys. A : Math. Gen. 21 (1988), 1689-1694. 
  25. [25] N. Pippenger, Discrete Applied Math. 25 (1989), 273-278. 
  26. [26] K. Tsurusaki, Thesis: Statistical Study of Random Knotting, University of Tokyo, 1995. 
  27. [27] K. Tsurusaki and T. Deguchi, J. Phys. Soc. Jpn. 64 (1995), 1506-1518. 
  28. [28] A. V. Vologodskii, A. V. Lukashin, M. D. Frank-Kamenetskii and V. V. Anshele- vich, Sov. Phys. JETP 39 (1974), 1059-1063. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.