Chaos in D0 brane dynamics

I. Aref'eva; P. Medvedev; O. Rytchkov; I. Volovich

Banach Center Publications (1998)

  • Volume: 43, Issue: 1, page 41-51
  • ISSN: 0137-6934

Abstract

top
We consider the classical and quantum dynamics of D0 branes within the Yang-Mills approximation. Using a simple ansatz we show that a classical trajectory exhibits a chaotic motion. Chaotic dynamics in N=2 supersymmetric Yang-Mills theory is also discussed.

How to cite

top

Aref'eva, I., et al. "Chaos in D0 brane dynamics." Banach Center Publications 43.1 (1998): 41-51. <http://eudml.org/doc/208862>.

@article{Arefeva1998,
abstract = {We consider the classical and quantum dynamics of D0 branes within the Yang-Mills approximation. Using a simple ansatz we show that a classical trajectory exhibits a chaotic motion. Chaotic dynamics in N=2 supersymmetric Yang-Mills theory is also discussed.},
author = {Aref'eva, I., Medvedev, P., Rytchkov, O., Volovich, I.},
journal = {Banach Center Publications},
keywords = {classical dynamics; quantum dynamics; classical trajectory; chaotic motion; supersymmetric Yang-Mills theory},
language = {eng},
number = {1},
pages = {41-51},
title = {Chaos in D0 brane dynamics},
url = {http://eudml.org/doc/208862},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Aref'eva, I.
AU - Medvedev, P.
AU - Rytchkov, O.
AU - Volovich, I.
TI - Chaos in D0 brane dynamics
JO - Banach Center Publications
PY - 1998
VL - 43
IS - 1
SP - 41
EP - 51
AB - We consider the classical and quantum dynamics of D0 branes within the Yang-Mills approximation. Using a simple ansatz we show that a classical trajectory exhibits a chaotic motion. Chaotic dynamics in N=2 supersymmetric Yang-Mills theory is also discussed.
LA - eng
KW - classical dynamics; quantum dynamics; classical trajectory; chaotic motion; supersymmetric Yang-Mills theory
UR - http://eudml.org/doc/208862
ER -

References

top
  1. [1] B. L. Altshuler and L. S. Levitov, cond-mat/9704122. 
  2. [2] D. V. Anosov and V. I. Arnold (eds), Dynamical Systems, VINITI, Moscow 1985. 
  3. [3] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, M Theory as a Matrix Model: a Conjecture, Phys. Rev. D 55 (1997), 5112, hep-th/9610043. 
  4. [4] J. D. Barrow and J. Levin, gr-qc/9706065; J. D. Barrow and M. P. Dabrowski, hep-th/9711041. 
  5. [5] G. Z. Baseyan, S. G. Matinyan and G. K. Savvidi, JETP Lett. 29 (1979), 585. 
  6. [6] O. Bogidas, M.-J. Giannoni and C. Schmit, Phys. Rev. Lett. 52 (1984), 1. 
  7. [7] G. Casati and B. V. Chirikov (eds.), Quantum Chaos: between order and disorder, Cambridge Univ. Press, Cambridge 1995. 
  8. [8] L. Casetti, R. Gatto and M. Modugno, hep-th/9707054. 
  9. [9] B. V. Chirikov and D. L. Shepelyanskii, JETP Lett. 34 (1981), 164. 
  10. [10] U. H. Danielsson, G. Ferretti and B. Sundborg, hep-th/9603081. 
  11. [11] B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys. B 305 (1988), 545. 
  12. [12] B. de Wit, M. Luscher and H. Nicolai, Nucl. Phys. B 320 (1989), 135. 
  13. [13] R. Dijkgraaf, E. Verlinde and H. Verlinde, 5D Black Holes and Matrix Strings, hep-th/9704018. Zbl0925.83056
  14. [14] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57 (1987), 617. 
  15. [15] J. Fröhlich and J. Hoppe, On Zero-Mass Ground States in Super-Membrane Matrix Models, ITH-TH/96-53. Zbl0911.46046
  16. [16] D. V. Gal'tsov and M. S. Volkov, Phys. Lett. B 256 (1991), 17. 
  17. [17] M.-J. Giannoni, A. Voros and J. Zinn-Justin (eds.), Chaos and Quantum Physics, North-Holland, Amsterdam 1991. 
  18. [18] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, Berlin 1990. Zbl0727.70029
  19. [19] C. M. Hull and P. K. Townsend, Nucl. Phys. B 438 (1995), 109. 
  20. [20] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A Large-N Reduced Model as Superstring, hep-th/9612115. Zbl0979.81567
  21. [21] G. Jona-Lasinio, C. Presilla and F. Capasso, Phys. Rev. Lett. 68 (1992), 2269. 
  22. [22] D. Kabat and P. Pouliot, hep-th/9603127. 
  23. [23] T. Kawabe and S. Ohta, Phys. Rev. D 44 (1991), 1274. 
  24. [24] M. Lüscher, Nucl. Phys. B 219 (1983), 233. 
  25. [25] B. V. Medvedev, Teor. Mat. Phys. 60 (1984), 224; 109 (1996), 406. 
  26. [26] K. Nakamura, Quantum Chaos, Cambridge University Press, Cambridge 1995. Zbl0900.81040
  27. [27] H. B. Nielsen, H. H. Rugh and S. E. Rugh, chao-dyn/9605013, hep-th/9611128. 
  28. [28] E. S. Nikolaevsky and L. N. Shchur, JETP Lett. 36 (1982), 218-220; JETP 58 (1983), 1. 
  29. [29] M. Ohya, Complexities and their Applications to Characterization of Chaos, to appear in Intern. J. of Theor. Phys., 1997. 
  30. [30] L. Salasnich, Mod. Phys. Lett. A 12 (1997) 1473-1480, quant-ph/9706025. 
  31. [31] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 19; B 431 (1994) 484. 
  32. [32] B. Simon, Ann. Phys. 146 (1983), 209. 
  33. [33] Ya. G. Sinai, Introduction to Ergodic Theory, Fasis, Moscow, 1996. 
  34. [34] M. Srednicki, cond-mat/9605127. 
  35. [35] L. Susskind, hep-th/9704080. 
  36. [36] I. V. Volovich, D-branes, Black Holes and SU(∞) Gauge Theory, hep-th/9608137. 
  37. [37] E. Witten, Nucl. Phys. B 443 (1995), 85. 
  38. [38] G. M. Zaslavskii, Stochasticity of Dynamical Systems, Nauka, Moscow, 1984. Zbl0616.34001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.