Topological types of fewnomials
Banach Center Publications (1998)
- Volume: 44, Issue: 1, page 81-92
- ISSN: 0137-6934
Access Full Article
topHow to cite
topCoste, Michel. "Topological types of fewnomials." Banach Center Publications 44.1 (1998): 81-92. <http://eudml.org/doc/208895>.
@article{Coste1998,
author = {Coste, Michel},
journal = {Banach Center Publications},
keywords = {fewnomials; finiteness results; polynomials of bounded degree; bounded number of monomials},
language = {eng},
number = {1},
pages = {81-92},
title = {Topological types of fewnomials},
url = {http://eudml.org/doc/208895},
volume = {44},
year = {1998},
}
TY - JOUR
AU - Coste, Michel
TI - Topological types of fewnomials
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 81
EP - 92
LA - eng
KW - fewnomials; finiteness results; polynomials of bounded degree; bounded number of monomials
UR - http://eudml.org/doc/208895
ER -
References
top- [1] R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Hermann, Paris, 1990. Zbl0694.14006
- [2] R. Benedetti, M. Shiota, Finiteness of semialgebraic types of polynomial functions, Math. Z. 208 (1991), 589-596. Zbl0744.14034
- [3] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. Zbl0633.14016
- [4] M. Coste, M. Reguiat, Trivialités en famille, in: Real Algebraic Geometry, M. Coste et al. (eds.), Lecture Notes in Math. 1524, Springer, Berlin, 1992, 193-204.
- [5] L. van den Dries, o-minimal structures, in: Logic: from Foundations to Applications (Conference Proceedings), W. Hodges et al. (eds.), Oxford University Press, New York, 1996, 137-185.
- [6] L. van den Dries, Tame Topology and o-minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, Cambridge, 1998. Zbl0953.03045
- [7] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), 183-205. Zbl0837.12006
- [8] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
- [9] T. Fukuda, Types topologiques des polynômes, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 87-106. Zbl0341.57019
- [10] R. M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1977), 207-217. Zbl0331.32006
- [11] A. Khovanskii, Fewnomials, Transl. Math. Monogr. 88, Amer. Math. Soc., Providence, 1991.
- [12] J. Knight, A. Pillay, C. Steinhorn, Definable sets in o-minimal structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. Zbl0662.03024
- [13] T. L. Loi, Thom stratifications for functions definable in o-minimal structures on (R,+,·), C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 1391-1394.
- [14] A. Pillay, Sheaves of continuous definable functions, J. Symbolic Logic 53 (1988), 1165-1169. Zbl0683.03018
- [15] A. Pillay, C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. Zbl0662.03023
- [16] M. Shiota, Piecewise linearization of subanalytic functions II, in: Real Analytic and Algebraic Geometry, M. Galbiati and A. Tognoli (eds.), Lecture Notes in Math. 1420, Springer, Berlin, 1990, 247-307.
- [17] M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Progr. Math. 150, Birkhäuser, Boston, 1997. Zbl0889.32006
- [18] P. Speisseger, Fiberwise properties of definable sets and functions in o-minimal structures, Manuscripta Math. 86 (1995), 283-291.
- [19] A. Wilkie, Model completeness results for expansion of the real field by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094. Zbl0892.03013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.