Topological types of fewnomials

Michel Coste

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 81-92
  • ISSN: 0137-6934

How to cite

top

Coste, Michel. "Topological types of fewnomials." Banach Center Publications 44.1 (1998): 81-92. <http://eudml.org/doc/208895>.

@article{Coste1998,
author = {Coste, Michel},
journal = {Banach Center Publications},
keywords = {fewnomials; finiteness results; polynomials of bounded degree; bounded number of monomials},
language = {eng},
number = {1},
pages = {81-92},
title = {Topological types of fewnomials},
url = {http://eudml.org/doc/208895},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Coste, Michel
TI - Topological types of fewnomials
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 81
EP - 92
LA - eng
KW - fewnomials; finiteness results; polynomials of bounded degree; bounded number of monomials
UR - http://eudml.org/doc/208895
ER -

References

top
  1. [1] R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Hermann, Paris, 1990. Zbl0694.14006
  2. [2] R. Benedetti, M. Shiota, Finiteness of semialgebraic types of polynomial functions, Math. Z. 208 (1991), 589-596. Zbl0744.14034
  3. [3] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. Zbl0633.14016
  4. [4] M. Coste, M. Reguiat, Trivialités en famille, in: Real Algebraic Geometry, M. Coste et al. (eds.), Lecture Notes in Math. 1524, Springer, Berlin, 1992, 193-204. 
  5. [5] L. van den Dries, o-minimal structures, in: Logic: from Foundations to Applications (Conference Proceedings), W. Hodges et al. (eds.), Oxford University Press, New York, 1996, 137-185. 
  6. [6] L. van den Dries, Tame Topology and o-minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, Cambridge, 1998. Zbl0953.03045
  7. [7] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), 183-205. Zbl0837.12006
  8. [8] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
  9. [9] T. Fukuda, Types topologiques des polynômes, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 87-106. Zbl0341.57019
  10. [10] R. M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1977), 207-217. Zbl0331.32006
  11. [11] A. Khovanskii, Fewnomials, Transl. Math. Monogr. 88, Amer. Math. Soc., Providence, 1991. 
  12. [12] J. Knight, A. Pillay, C. Steinhorn, Definable sets in o-minimal structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. Zbl0662.03024
  13. [13] T. L. Loi, Thom stratifications for functions definable in o-minimal structures on (R,+,·), C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 1391-1394. 
  14. [14] A. Pillay, Sheaves of continuous definable functions, J. Symbolic Logic 53 (1988), 1165-1169. Zbl0683.03018
  15. [15] A. Pillay, C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. Zbl0662.03023
  16. [16] M. Shiota, Piecewise linearization of subanalytic functions II, in: Real Analytic and Algebraic Geometry, M. Galbiati and A. Tognoli (eds.), Lecture Notes in Math. 1420, Springer, Berlin, 1990, 247-307. 
  17. [17] M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Progr. Math. 150, Birkhäuser, Boston, 1997. Zbl0889.32006
  18. [18] P. Speisseger, Fiberwise properties of definable sets and functions in o-minimal structures, Manuscripta Math. 86 (1995), 283-291. 
  19. [19] A. Wilkie, Model completeness results for expansion of the real field by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094. Zbl0892.03013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.