Dolbeault homotopy theory and compact nilmanifolds

L. Cordero; M. Fernández; A. Gray; L. Ugarte

Banach Center Publications (1998)

  • Volume: 45, Issue: 1, page 137-154
  • ISSN: 0137-6934

Abstract

top
In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.

How to cite

top

Cordero, L., et al. "Dolbeault homotopy theory and compact nilmanifolds." Banach Center Publications 45.1 (1998): 137-154. <http://eudml.org/doc/208898>.

@article{Cordero1998,
abstract = {In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.},
author = {Cordero, L., Fernández, M., Gray, A., Ugarte, L.},
journal = {Banach Center Publications},
keywords = {nilmanifolds; cohomology Frölicher spectral sequence; cohomotopy Frölicher spectral sequence; nilpotent complex structure},
language = {eng},
number = {1},
pages = {137-154},
title = {Dolbeault homotopy theory and compact nilmanifolds},
url = {http://eudml.org/doc/208898},
volume = {45},
year = {1998},
}

TY - JOUR
AU - Cordero, L.
AU - Fernández, M.
AU - Gray, A.
AU - Ugarte, L.
TI - Dolbeault homotopy theory and compact nilmanifolds
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 137
EP - 154
AB - In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.
LA - eng
KW - nilmanifolds; cohomology Frölicher spectral sequence; cohomotopy Frölicher spectral sequence; nilpotent complex structure
UR - http://eudml.org/doc/208898
ER -

References

top
  1. [1] L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Compact manifolds with indefinite Kähler metrics, Proc. VIth Int. Coll. Differential Geometry (Ed. L.A. Cordero), Santiago (Spain) 1988, Cursos y Congresos 61, 25-50, Univ. Santiago de Compostela (Spain) 1989. Zbl0696.53037
  2. [2] L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Moduli spaces of complex structures on compact four dimensional nilmanifolds, Bolletino U.M.I. (7) 5-A (1991), 381-389. Zbl0764.53024
  3. [3] E. Abbena, S. Garbiero and S. Salamon, private communication. 
  4. [4] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik (3) 4, Springer-Verlag, Berlin, Heidelberg, 1984. 
  5. [5] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Memoirs Amer. Math. Soc. 8 (179) (1976). Zbl0338.55008
  6. [6] C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. Zbl0672.53036
  7. [7] L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. Zbl0596.53030
  8. [8] L. A. Cordero, M. Fernández and A. Gray, The Frölicher spectral sequence for compact nilmanifolds, Illinois J. Math. 35 (1991), 56-67. Zbl0721.58003
  9. [9] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, A general description of the terms in the Frölicher spectral sequence, Diff. Geom. Appl. 7 (1997), 75-84. Zbl0880.53055
  10. [10] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, preprint 1997. Zbl0965.32026
  11. [11] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Frölicher spectral sequence of compact nilmanifolds with nilpotent complex structure, Proc. Conference on Differential Geometry, Budapest, July 27-30, 1996 (to appear). Zbl0943.57015
  12. [12] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
  13. [13] M. Fernández, M. J. Gotay and A. Gray, Four-dimensional compact parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209-1212. Zbl0656.53034
  14. [14] A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644. Zbl0065.16502
  15. [15] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. Zbl0408.14001
  16. [16] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71. Zbl0691.53040
  17. [17] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798. Zbl0137.17501
  18. [18] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
  19. [19] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), 261-288. Zbl0836.57019
  20. [20] I. A. Mal'cev, A class of homogeneous spaces, Amer. Math. Soc. Transl. No. 39 (1951). 
  21. [21] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geom. 10 (1975), 85-112. Zbl0297.32019
  22. [22] J. Neisendorfer and L. Taylor, Dolbeault Homotopy Theory, Trans. Amer. Math. Soc. 245 (1978), 183-210. Zbl0441.55014
  23. [23] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. Zbl0058.02202
  24. [24] J. Oprea and A. Tralle, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997. Zbl0891.53001
  25. [25] H. Pittie, The nondegeneration of the Hodge-de Rham spectral sequence, Bull. Amer. Math. Soc. 20 (1989), 19-22. Zbl0671.32024
  26. [26] Y. Sakane, On compact parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212. Zbl0361.22005
  27. [27] D. Tanré, Modèle de Dolbeault et fibré holomorphe, J. Pure Appl. Algebra 91 (1994), 333-345. Zbl0829.55007
  28. [28] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468. Zbl0324.53031
  29. [29] A. Tralle, Applications of rational homotopy to geometry (results, problems, conjectures), Expo. Math. 14 (1996), 425-472. Zbl0873.55012
  30. [30] H. C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776. Zbl0056.15403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.