Dolbeault homotopy theory and compact nilmanifolds
L. Cordero; M. Fernández; A. Gray; L. Ugarte
Banach Center Publications (1998)
- Volume: 45, Issue: 1, page 137-154
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topCordero, L., et al. "Dolbeault homotopy theory and compact nilmanifolds." Banach Center Publications 45.1 (1998): 137-154. <http://eudml.org/doc/208898>.
@article{Cordero1998,
abstract = {In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.},
author = {Cordero, L., Fernández, M., Gray, A., Ugarte, L.},
journal = {Banach Center Publications},
keywords = {nilmanifolds; cohomology Frölicher spectral sequence; cohomotopy Frölicher spectral sequence; nilpotent complex structure},
language = {eng},
number = {1},
pages = {137-154},
title = {Dolbeault homotopy theory and compact nilmanifolds},
url = {http://eudml.org/doc/208898},
volume = {45},
year = {1998},
}
TY - JOUR
AU - Cordero, L.
AU - Fernández, M.
AU - Gray, A.
AU - Ugarte, L.
TI - Dolbeault homotopy theory and compact nilmanifolds
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 137
EP - 154
AB - In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.
LA - eng
KW - nilmanifolds; cohomology Frölicher spectral sequence; cohomotopy Frölicher spectral sequence; nilpotent complex structure
UR - http://eudml.org/doc/208898
ER -
References
top- [1] L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Compact manifolds with indefinite Kähler metrics, Proc. VIth Int. Coll. Differential Geometry (Ed. L.A. Cordero), Santiago (Spain) 1988, Cursos y Congresos 61, 25-50, Univ. Santiago de Compostela (Spain) 1989. Zbl0696.53037
- [2] L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Moduli spaces of complex structures on compact four dimensional nilmanifolds, Bolletino U.M.I. (7) 5-A (1991), 381-389. Zbl0764.53024
- [3] E. Abbena, S. Garbiero and S. Salamon, private communication.
- [4] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik (3) 4, Springer-Verlag, Berlin, Heidelberg, 1984.
- [5] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Memoirs Amer. Math. Soc. 8 (179) (1976). Zbl0338.55008
- [6] C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. Zbl0672.53036
- [7] L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. Zbl0596.53030
- [8] L. A. Cordero, M. Fernández and A. Gray, The Frölicher spectral sequence for compact nilmanifolds, Illinois J. Math. 35 (1991), 56-67. Zbl0721.58003
- [9] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, A general description of the terms in the Frölicher spectral sequence, Diff. Geom. Appl. 7 (1997), 75-84. Zbl0880.53055
- [10] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, preprint 1997. Zbl0965.32026
- [11] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Frölicher spectral sequence of compact nilmanifolds with nilpotent complex structure, Proc. Conference on Differential Geometry, Budapest, July 27-30, 1996 (to appear). Zbl0943.57015
- [12] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
- [13] M. Fernández, M. J. Gotay and A. Gray, Four-dimensional compact parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209-1212. Zbl0656.53034
- [14] A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644. Zbl0065.16502
- [15] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. Zbl0408.14001
- [16] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71. Zbl0691.53040
- [17] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798. Zbl0137.17501
- [18] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
- [19] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), 261-288. Zbl0836.57019
- [20] I. A. Mal'cev, A class of homogeneous spaces, Amer. Math. Soc. Transl. No. 39 (1951).
- [21] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geom. 10 (1975), 85-112. Zbl0297.32019
- [22] J. Neisendorfer and L. Taylor, Dolbeault Homotopy Theory, Trans. Amer. Math. Soc. 245 (1978), 183-210. Zbl0441.55014
- [23] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. Zbl0058.02202
- [24] J. Oprea and A. Tralle, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997. Zbl0891.53001
- [25] H. Pittie, The nondegeneration of the Hodge-de Rham spectral sequence, Bull. Amer. Math. Soc. 20 (1989), 19-22. Zbl0671.32024
- [26] Y. Sakane, On compact parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212. Zbl0361.22005
- [27] D. Tanré, Modèle de Dolbeault et fibré holomorphe, J. Pure Appl. Algebra 91 (1994), 333-345. Zbl0829.55007
- [28] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468. Zbl0324.53031
- [29] A. Tralle, Applications of rational homotopy to geometry (results, problems, conjectures), Expo. Math. 14 (1996), 425-472. Zbl0873.55012
- [30] H. C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776. Zbl0056.15403
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.