Une généralisation des nombres de Milnor pour les intersections complètes à singularités non isolées

Daniel Lehmann

Banach Center Publications (1998)

  • Volume: 45, Issue: 1, page 177-182
  • ISSN: 0137-6934

How to cite

top

Lehmann, Daniel. "Une généralisation des nombres de Milnor pour les intersections complètes à singularités non isolées." Banach Center Publications 45.1 (1998): 177-182. <http://eudml.org/doc/208902>.

@article{Lehmann1998,
author = {Lehmann, Daniel},
journal = {Banach Center Publications},
keywords = {complete intersection; Milnor number; singularities},
language = {fre},
number = {1},
pages = {177-182},
title = {Une généralisation des nombres de Milnor pour les intersections complètes à singularités non isolées},
url = {http://eudml.org/doc/208902},
volume = {45},
year = {1998},
}

TY - JOUR
AU - Lehmann, Daniel
TI - Une généralisation des nombres de Milnor pour les intersections complètes à singularités non isolées
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 177
EP - 182
LA - fre
KW - complete intersection; Milnor number; singularities
UR - http://eudml.org/doc/208902
ER -

References

top
  1. [BB] P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geom. 7 (1972), 279-342. Zbl0268.57011
  2. [B] R. Bott, Lectures on characteristic classes and foliations, Lectures on Algebraic and Differential Topology, Lecture Notes in Mathematics 279, Springer-Verlag, 1972, 1-94. 
  3. [BLS'S] J. P. Brasselet, D. Lehmann, J. Seade and T. Suwa, Milnor classes of local complete intersections, Preprint series in Mathematics 413, 1998, Hokkaido University, Sapporo 060, Japan, 1-40. 
  4. [BS] J.-P. Brasselet et M.-H. Schwartz, Sur les classes de Chern d'un ensemble analytique complexe, Caractéristique d'Euler-Poincaré, Astérisque 82-83, Soc. Math. de France, 1981, 93-147. 
  5. [D] A. Dimca, On the homology and cohomology of complete intersections with isolated singularities, Compositio Math. 58 (1986), 321-339. Zbl0598.14017
  6. [F] W. Fulton, Intersection Theory, Springer-Verlag, 1984. Zbl0541.14005
  7. [GSV] X. Gómez-Mont, J. Seade and A. Verjovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann. 291 (1991), 737-751. Zbl0725.32012
  8. [G] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. Zbl0285.14002
  9. [H] H. Hamm, Lokale topologische Eigenschaften komplexer Raüme, Math. Ann. 191 (1971), 235-252. Zbl0214.22801
  10. [KT] H. King and D. Trotmann, Poincaré-Hopf theorems on stratified sets, preprint. 
  11. [LS] D. Lehmann and T. Suwa, Residues of holomorphic vector fields relative to singular invariant subvarieties, J. of Differential Geom. 42 (1995), 165-192. Zbl0844.32007
  12. [LSS] D. Lehmann, M. Soares and T. Suwa, On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Bras. Mat. 26 (1995), 183-199. Zbl0852.32015
  13. [LS'S] D. Lehmann, J. Seade and T. Suwa, A generalization of the Milnor number for subvarieties with non isolated singularities, preprint (1997). 
  14. [L] E. Looijenga, Isolated Singular Points on Complete Intersections, London Mathematical Society Lecture Note Series 77, Cambridge Univ. Press, 1984. Zbl0552.14002
  15. [M1] J. Milnor, Topology from the Differentiable Viewpoint, Univ. Press of Virginia, Charlottesville, 1965. Zbl0136.20402
  16. [M2] J. Milnor, Singular Points of Complex Hypersurfaces, Annales of Mathematics Studies 61, Princeton University Press, Princeton, 1968. 
  17. [O] S. Ochanine, Signature modulo 16, invariants de Kervaire généralisés et nombres caractéristiques dans la K-théorie réelle, Mem. Soc. Mat. France, nouvelle série 5, 1981. Zbl0462.57012
  18. [P] A. Parusiński, A generalization of the Milnor number, Math. Ann. 281 (1988), 247-254. Zbl0617.32012
  19. [PP] A. Parusiński and P. Pragacz, A formula for the Euler characteristic of singular hypersurfaces, J. Algebraic Geom. 4 (1995), 337-351. Zbl0834.32009
  20. [Sc] M.-H. Schwartz, Champs radiaux sur une stratification analytique complexe, Travaux en cours, Hermann, 1991. 
  21. [Se] J. Seade, The index of a vector field on a complex surface with singularities, Contemp. Maths. 58 part III, AMS, edit. A. Verjovsky, 1987, 225-232. 
  22. [SS1] J. Seade and T. Suwa, A residue formula for the index of a holomorphic flow, Math. Ann. 304 (1996), 621-634. Zbl0853.32040
  23. [SS2] J. Seade and T. Suwa, An adjunction formula for local complete intersections, pre-print. Zbl0918.32019
  24. [St] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951. Zbl0054.07103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.